Betriebsanleitung

Hochspannungsgenerator POWER CHARGER PC

BA-de-3041-2105

Inhaltsverzeichnis

1 Geräteübersicht 1.1 Varianten	
1.2 Einstellbereich Hochspannung	10
2Sicherheit2.1Kennzeichnung von Gefahren2.2Schutz gegen Berührung2.3Technischer Fortschritt2.4Bestimmungsgemäße Verwendung2.5Arbeits- und Betriebssicherheit	
3 Installation	
3.1 Montage des Hochspannungsgenerators	17
3.2 Anschluss Erdverbindung	
3.3 Installation der Hochspannungskabel	
3.4 Anschließbare Elektroden	
3.4.1 Anschließbare Aufladeelektroden	
3.4.2 Anschluss der Aufladeelektrode an den Generator	ZZ
3.6 Anschluss der Entladeelektrode an den Generator	
3.7 Lösen des Hochspannungskabels	
3.8 Anschluss der Versorgungsspannung	
3.8.1 Anschluss Versorgungsspannung 24 V DC	
3.8.2 Anschluss Versorgungsspannung 90 - 264 V AC	
3.9 Feldbus-Schnittstellen	25
3.9.1 CANopen® (optional)	
3.9.2 ModbusTCP (optional)	
3.10 Analoge Schnittstelle	
3.10.1 Analoge Schnittstelle Aufladung	
3.10.2 Analoge Schnillstelle Entladung	
4 Betrieb	
4.1 Inbetriebnahme.	
4.2 Funktionsuberwachung	
4.3 Freigabe der Hochspannung	
4.4 Integrierte bedientelernente	4242 12
4.4.1 Declement of the mastatum	
4.4.2.1 Freigabe	
4.4.2.2 Konfiguration	
4.4.2.2.1 ECC Benutzer	
4.4.2.2.2 Zugriffsverwaltung	56

4.4.2	2.2.3	Einstellungen (Sprache, Standardzugriffslevel,		
		Darstellung Spannungs- und Stromwerte		57
4.4.2	2.2.4	Highlight Werte		58
4.4.2	2.2.5	Werkseinstellungen		58
4.4.2	2.2.6	Anmelden		58
4.4.2	2.3		• • • • •	59
4.4.2.4 Ubersicht Eltex DEBUG / Meldungsübersicht				
4.4.4	2.5	Parameter Allgemein	• • • • •	01 62
4.4.4	2.0			
5	War	tung	• • • • •	63
5.1	Hoch		• • • • •	63
5.Z	Auffa		• • • • •	63
6	Stör	ungsbeseitigung	• • • • •	64
6.1	Fehl			64
6.2	Wari	nungsmeldungen	• • • • •	/2
7	Gara	antie		75
8	Tech	nnische Daten POWER CHARGER PC		76
9	Abm	nessungen		
9.1	Hoch	nspannungsgenerator POWER CHARGER		
9.2	Verte	eiler PCV (optional)		80
9.3	Verlä	ängerungskabel KÁ/YY		81
10	Ersa	itzteile und Zubehör		82
11	Auß	erbetriebnahme / Batterieentnahme		84
^				05
Α Δ 1	Konf	iang	• • • • •	05 85
Δ1	1 Ste	cker M16 für 24 V DC Spannungsversorgung		
73.1.	Gera	ade Version Ausführung mit Schirmklemmring		85
A.1.	2 Kal	taerätestecker für AC-Netzversorgung		86
A.1.	3 Ste	cker M12, 8-polig für Analog-Schnittstelle Aufladung		87
A.1.	4 Ste	cker M12, 5-polig für Analog-Schnittstelle Entladung		87
A.2	Vers	chmutzungsüberwachung		88
A.3	Verb	litzungserkennung		89
A.4	Ubw	ersicht der Istwerte und Parameter	• • • • •	90
A.4.	1 Iste	rte Aufladung		90
A.4.	2 ISTW			91
A.4.	3 ISIN		• • • • •	91
Δ /	4 Fal 5 Par	ameter Entladung		רט . גט
Δ4	orran 6 Par	ameter Allgemein	• • • • •	93 QA
A.4.	7 Par	ameter Schnittstelle		94
Kon	formi	tätserklärung		95

Verehrter Kunde

Der Hochspannungsgenerator POWER CHARGER PC ist eine universell nutzbare Hochspannungs-Versorgungseinheit zur kontrollierten Aufladung und Nutzung elektrostatischer Effekte. Es stehen folgende Elektroden zum Anschluss zur Verfügung:

Aufladung

Systemvarianten PCSC, PCTL, PCRT und PCRM:

- R130A3 / R130A6 / R130A3L
- R120 eingeschränkter Spannungsbereich Betriebsanleitung R120 beachten
- R23ATR / R23ATR11
 mit fest angeschlossenem Hochspannungskabel
- EXR130A3 / EXR130A3L: nur f
 ür Generatoren folgender Auspr
 ägung: PC__/____E, PC__/___D eingeschr
 änkter Spannungsbereich, siehe Tabelle Seite 10

Systemvariante PCMT:

• R170A3 eingeschränkter Spannungsbereich, siehe Tabelle Seite 10

Entladung

- Variante "A" (nicht f
 ür Performance Level Anwendungen) R50
 - EXR5C
- Variante "C" R60 R60L
- Variante "P"
 - RG52C

Dieses Dokument stellt die allgemeine systemübergreifende Bedienungsanleitung für alle Generatoren der Familie POWER CHARGER dar. Für systemspezifische Ergänzungen, Einschränkungen bzw. Besonderheiten beachten Sie bitte weitere Informationen in der entsprechenden Bedienungsanleitung des jeweiligen Systems.

Alle Generatoren der Produktfamilie POWER CHARGER zeichnen sich durch folgende Merkmale aus:

- Bis zu 50 % mehr Aufladeleistung als bei vergleichbaren Eltex Aufladegeneratoren
- Parallele Regelung der Aufladespannung, des Aufladestroms und der Aufladeleistung
- Temperaturgesteuerte Leistungsbegrenzung
- Robuster, kompakter Aufbau
- Leichte Montage
- Geringes Gewicht
- Industrietaugliche Hochspannungssteckerverbindung
- · Integrierte Funktions- und Störungsüberwachung
- LED-Anzeige zur Visualisierung des Betriebszustands
- Bedienung über Touchscreen (optional)
- Einfache Einstellung über analoge Schnittstelle
- Einbindung des Generators in CANopen® Netzwerke (optional)
- Industrial Ethernet Unterstützung (optional)

Die Spracheinstellung bei der Displayvariante finden Sie in <u>Kapitel</u> <u>4.4.2.2.3 "Einstellungen (Sprache, Standardzugriffslevel, Darstellung</u> <u>Spannungs- und Stromwerte)", Seite 57</u>.

Bitte lesen Sie die Betriebsanleitung vor der Inbetriebnahme des Gerätes sorgfältig durch. Sie vermeiden damit Gefahren für Personen und Sachgegenstände.

Wenn Sie Fragen, Anregungen oder Verbesserungsvorschläge haben, dann rufen Sie uns einfach an. Wir freuen uns über jeden Austausch mit den Anwendern unserer Geräte.

1. Geräteübersicht

Z-116035by_1

Z-116035by_2

Abb. 3: Hochspannungsgenerator POWER CHARGER mit anschließbarer Aufladeelektrode

- 1 Betriebsschalter EIN / AUS
- 2 Netzeingang 90 264 V AC
- 3 Netzeingang 24 V DC
- 4 Erdungsklemme
- 5 analoge Schnittstelle Aufladung
- 6 Schnittstelle 1 Feldbus
- 7 Service-Schnittstelle
- 8 Schnittstelle 2 Feldbus
- 9 Hochspannungsausgang: Anschluss der Aufladeelektrode
- 10 Hochspannungskabel
- 11 Aufladeelektrode
- 12 analoge Schnittstelle Entladung
- 13 Hochspannungsausgang Entladung

1.1 Varianten

Die Hochspannungsgeneratoren der Familie POWER CHARGER PC sind in unterschiedlichen Varianten verfügbar. Die Kombinationsmöglichkeiten sind abhängig von der Ausgangsspannung, der Polarität, der Ausgangsleistung und den Schnittstellen etc.

Referenzcode mit den einzelnen Ausprägungen:

	Artikel- code	Ausführung		Standard-Version
1	Variable	Entladung	X A C P	Keine Entladung Aktive Entladung Serie R50 / EXR5C* *nicht in Kombination mit P, D bei Ausprägung 8 Aktive Entladung Serie R60 Passive Entladung
2	Variable	Polarität	N P	Negativ Positiv
3	Variable	Spannung	3 6	30 kV-Version 60 kV-Version
4	Variable	Leistung / Versorgung	L S H	24 V DC, 75 W Netzspannung 90 / 264 V AC, 75 W Netzspannung 90 / 264 V AC, 150 W
5	Variable	Zubehör Stecker / Kabel	O L C E U	Kein Stecker / Kabel mitgeliefert 24 V Stecker Kaltgerätestecker konfektionierbar Kaltgerätekabel mit Stecker EU (CEE 7/7) Kaltgerätekabel mit Stecker NA (NEMA 5-15)
6	Variable	Display	X D	Ohne Display Display integriert
7	Variable	Schnittstelle	A C M	Analogschnittstelle Analogschnittstelle + CANopen® Analogschnittstelle + ModbusTCP
8	Variable	Zertifizierung	X P E D	Ohne zusätzliche Zulassung Performance Level d geeignet für Betrieb mit Ex-Elektroden abweichende max. Ausgangsspannung siehe Tabelle Seite 10 geeignet für Betrieb mit Ex-Elektroden mit Perfor- mance Level d abweichende max. Ausgangsspannung, siehe Tabelle Seite 10
9	Variable	Ausführung	000	Standardausführung

1.2 Einstellbereich Hochspannung

Je nach ausgewählter Variante sind unterschiedliche maximale Werte für Ausgangsspannung, Ausgangsstrom und Ausgangsleistung einstellbar.

Abb. 4: Diagramm Abhängigkeit Spannung / Strom

Ausgangsspannung / - strom für den Betrieb in Verbindung mit Aufladeelektroden EXR130A3 / EXR130A3L / R170A3

Variante	Umin	Umax	Imin	Imax
PC/_N3LE PC/_N3LD PC/_N3SE PC/_N3SD	1,5 kV	27 kV	50 µA	3,75 mA
PC/_N3HE PC/_N3HD	1,5 kV	27 kV	50 µA	7,5 mA
PC/_P3LE PC/_P3LD PC/_P3SE PC/_P3SD	1,5 kV	18 kV	50 µA	3,75 mA
PC/_P3HE PC/_P3HD	1,5 kV	18 kV	50 µA	7,5 mA
PCMT/3L PCMT/3S	1,5 kV	18 kV	50 µA	3,75 mA
PCMT/3H	1,5 kV	18 kV	50 µA	7,5 mA

F00058y

Abhängigkeit Strom / Spannung

Versorgung /	Variable Ausgangsspannung	Variable Ausgangsspannung
Ausgangsleistung	30 kV	60 kV
L = 24 V DC, 75 W	3,75 mA bei 20 kV	1,875 mA bei 40 kV
S = 90/264 V AC, 75 W	2,5 mA bei 30 kV	1,25 mA bei 60 kV
H = 90/264 V AC, 150 W	7,5 mA bei 20 kV 5 mA bei 30 kV	3,75 mA bei 40 kV 2,5 mA bei 60 kV

Ausgangswerte min / max - ohne Einschränkung

Versorgung / Ausgangsleistung	Variable Ausgangsspannung 30 kV	Variable Ausgangsspannung 60 kV
L = 24 V DC, 75 W S = 90/264 V AC, 75 W	$U_{min} = 1,5 \text{ kV}$ $I_{min} = 50 \mu A$ $U_{max} = 30 \text{ kV}$ $I_{max} = 3,75 \text{ mA}$	$U_{min} = 6 \text{ kV}$ $I_{min} = 50 \mu\text{A}$ $U_{max} = 60 \text{kV}$ $I_{max} = 1,875 \text{mA}$
H = 90/264 V AC, 150 W	$U_{min} = 1,5 \text{ kV}$ $I_{min} = 50 \mu\text{A}$ $U_{max} = 30 \text{kV}$ $I_{max} = 7,5 \text{mA}$	$U_{min} = 6 \text{ kV}$ $I_{min} = 50 \mu\text{A}$ $U_{max} = 60 \text{kV}$ $I_{max} = 3,75 \text{mA}$

2. Sicherheit

Die Geräte sind nach dem neuesten Stand der Technik betriebssicher konstruiert, gebaut, geprüft und haben das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Trotzdem können von den Geräten Gefahren für Personen und Sachgegenstände ausgehen, wenn diese unsachgemäß betrieben werden. Die Betriebsanleitung ist daher in vollem Umfang zu lesen und die Sicherheitshinweise sind zu beachten.

2.1 Kennzeichnung von Gefahren

In der Betriebsanleitung wird auf mögliche Gefahren beim Gebrauch der Geräte mit folgenden Symbolen hingewiesen:

Warnung!

Dieses Symbol kennzeichnet in der Betriebsanleitung Handlungen, die bei unsachgemäßer Durchführung eine Gefahr für Leib und Leben von Personen darstellen können.

Achtung!

Mit diesem Symbol sind in der Betriebsanleitung alle Handlungen gekennzeichnet, von denen mögliche Gefahren für Sachgegenstände ausgehen können.

Ex Warnhinweis!

Nur für Geräte mit Ex-Zulassung.

Dieses Symbol kennzeichnet die besonderen Bedingungen, die gemäß der Zulassungen beim Betrieb der Geräte im Ex-Bereich beachtet werden müssen.

2.2 Schutz gegen Berührung

Da sich der Einbau bzw. der Einsatzort der Geräte der Kenntnis von Eltex entzieht, ist ein Berührungsschutz gegen unbeabsichtigtes Berühren der Elektroden und hochspannungsführende Teile durch Personen gemäß den zutreffenden berufsgenossenschaftlichen Vorschriften vorzusehen (z.B. DGUV V3 in Deutschland). Ist der Berührungsschutz aus leitfähigem Material, so ist dieser zu erden.

2.3 Technischer Fortschritt

Der Hersteller behält sich vor, technische Daten ohne spezielle Ankündigung dem entwicklungstechnischen Fortschritt anzupassen. Über die Aktualität und eventuelle Änderungen und Erweiterungen der Betriebsanleitung gibt Ihnen Eltex gerne Auskunft.

2.4 Bestimmungsgemäße Verwendung

Der Hochspannungsgenerator POWER CHARGER ist als Betriebsspannungserzeuger für die zugehörigen Eltex Aufladeelektroden zugelassen. Der Hochspannungsgenerator POWER CHARGER darf nur mit den zugehörigen Eltex-Elektroden betrieben werden (Elektrodentypen siehe Kapitel Installation und Montage).

Beim Einsatz in sonstigen Hochspannungsanwendungen übernimmt der Betreiber die Verantwortung für eine sicherheitstechnisch unbedenkliche Verwendung.

Bei nicht sach- und bestimmungsgemäßer Verwendung wird jede Haftung und Garantie vom Hersteller abgelehnt.

Umbauten und Veränderungen an den Geräten sind nicht zugelassen.

Es dürfen nur Originalersatzteile und Zubehör von Eltex verwendet werden.

2.5 Arbeits- und Betriebssicherheit

Warnung!

Beachten Sie nachstehende Hinweise und das komplette <u>Kapitel 2</u> <u>"Sicherheit", Seite 12</u> genau!

Beachten Sie grundsätzlich die in Ihrem Land geltenden Vorschriften für elektrischen Geräten.

- Vor der Installation, dem Beheben von Betriebsstörungen und vor dem Ausführen von Reinigungs- und Wartungsarbeiten an den Geräten und den zugehörigen Komponenten ist der Generator abzuschalten und die Netzversorgung zu unterbrechen (siehe <u>Kapitel 3 "Installation", Seite 17, Kapitel 5 "Wartung", Seite 63, Kapitel 6 "Störungsbeseitigung", Seite 64</u>).
- Werden elektrisch leitfähige bzw. leitfähig beschichtete Substrate (z.B. Metallfolien bzw. Metallverbundstoffe) verarbeitet, so ist die Aufladespannung des Generators auszuschalten.
- Bei sämtlichen Arbeiten darf die Maschine, an der die Geräte installiert sind, nicht in Betrieb sein (siehe <u>Kapitel 3 "Installation", Seite 17</u>, <u>Kapitel 5 "Wartung", Seite 63</u>, <u>Kapitel 6 "Störungsbeseitigung", Seite 64</u>).
- Sämtliche Arbeiten an den Geräten dürfen nur von Elektrofachpersonal durchgeführt werden (siehe <u>Kapitel 3 "Installation", Seite 17</u>, <u>Kapitel 5</u> <u>"Wartung", Seite 63</u>, <u>Kapitel 6 "Störungsbeseitigung", Seite 64</u>, <u>Kapitel 11 "Außerbetriebnahme / Batterieentnahme", Seite 84</u>).
- Die Anwendung der Geräte darf nur von für den Explosionsbereich geschultem Fachpersonal erfolgen.
- Vor der Inbetriebnahme des Generators ist darauf zu achten, dass das Gerät über die Erdungsklemme dauergeerdet ist. Das Erdungskabel

sollte einen Mindestquerschnitt von 1,5 mm² aufweisen und auf kürzestem Weg leitfähig mit dem Maschinengestell verbunden werden. Bei einer Kabellänge über 0,5 m sind 2,5 mm² erforderlich. Der Anschluss der Erdverbindung ist für die gesamte Betriebsdauer des Generators dauerhaft sicher zu stellen (siehe <u>Kapitel 3.2 "Anschluss Erdverbindung", Seite 1</u>8).

- Beim Verlegen der Hochspannungskabel <u>Kapitel 3.3 "Installation der</u> <u>Hochspannungskabel", Seite 19</u> beachten.
- Das Hochspannungskabel muss bis zum Anschlag (150 mm) in den Kabeleingang hineingeschoben werden! Der Anschlussbereich des Hochspannungskabels muss frei von Verschmutzungen sein (siehe Kapitel 3.5 "Anschluss der Aufladeelektrode an den Generator", Seite 22).
- Ist keine Elektrode an der jeweiligen Steckverbindung des Generators angeschlossen, muss diese unbedingt mit dem mitgelieferten Blindstopfen geschlossen werden (siehe <u>Kapitel 3.5 "Anschluss der Aufladeelektrode an den Generator", Seite 22</u>, <u>Kapitel 3.6 "Anschluss der Entladeelektrode an den Generator", Seite 23</u>).
- Bei Anwendungen mit bewegten Elektroden (z.B. Filmziehleisten) müssen die Hochspannungskabel so befestigt werden, dass im Anschlussbereich des Netzgerätes keine Kabelbewegungen auftreten (siehe Kapitel 3.5 "Anschluss der Aufladeelektrode an den Generator", Seite 22, Kapitel 3.6 "Anschluss der Entladeelektrode an den Generator", Seite 23).
- Aufgrund der Leistungsaufnahme des Hochspannungsgenerators sind zur Reduzierung der Kabelverluste größtmögliche Kabelquerschnitte und kurze Leitungen zu verwenden (siehe <u>Kapitel 3.8.1 "Anschluss</u> <u>Versorgungsspannung 24 V DC", Seite 24</u>).
- Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten (siehe <u>Kapitel 3.8.1 "Anschluss Versorgungsspannung 24 V</u> <u>DC". Seite 24, Kapitel 3.9 "Feldbus-Schnittstellen". Seite 25</u>.
- Zur Verhinderung einer Unterbrechung der Spannungsversorgung durch Vibration oder anderen mechanischen Einflüssen, empfiehlt Eltex die Verwendung verriegelter Buchsen zum Anschluss der Netzversorgung; siehe Ersatzteil Nr. 116329 (siehe <u>Kapitel 3.8.2 "Anschluss</u> <u>Versorgungsspannung 90 - 264 V AC", Seite 25</u>).
- Beim Einsatz der Variante mit CANopen® ist f
 ür beide Busleitungen ein f
 ür CAN-Bus-Netzwerke geeignetes Kabel mit einem Wellenwiderstand von 120 Ohm zu verwenden siehe <u>Kapitel 3.9.1 "CANopen®</u> (optional)", Seite 26).
- Für die Schnittstellenkabel sind grundsätzlich geschirmte Kabel zu verwenden; die Schirme sind beidseitig aufzulegen (siehe <u>Kapitel 3.10.1</u> <u>"Analoge Schnittstelle Aufladung", Seite 28, Kapitel 3.10.2 "Analoge Schnittstelle Entladung", Seite 30</u>).

- Bei Verwendung der bei Eltex optional erhältlichen Signalkabel CS und Netzkabel KN sind für den Anschluss der einzelnen Leitungen die farblichen Markierungen und Biegeradien zu beachten (siehe <u>Kapitel</u> <u>3.11 "Einsatz Eltex Signalkabel CS und Netzkabel KN", Seite 31</u>).
- Der Hochspannungsgenerator, alle angeschlossenen Geräte sowie die elektrischen Leitungen und Hochspannungskabel sind in regelmäßigen Abständen auf Schäden zu überprüfen. Liegt ein Schaden vor, so ist dieser vor einem weiteren Betrieb der Geräte zu beheben oder die Geräte sind außer Betrieb zu setzen. Achten Sie darauf, dass die Elektroden nicht verschmutzt sind.
- Es ist darauf zu achten, dass bei Varianten mit aktiver Entladung und der entsprechenden Parametrierung der Entladung auf Modus "Aktiv" die Hardwarefreigabe für die Entladung immer vor der Freigabe für die Aufladung zu setzen ist (siehe <u>Kapitel 4.3 "Freigabe der Hochspannung", Seite 41).</u>
- Bei einer Reinigung die Elektrode nicht einweichen und die Emissionsspitzen nicht beschädigen; vor jeder erneuten Inbetriebnahme muss das Lösungsmittel vollständig verdampft sein (siehe <u>Kapitel 5 "Wartung", Seite 63).</u>
- Die Schutzart IP54 gilt nur bei geschlossenem Gehäusedeckel und abgedeckten Kabelanschlüssen.
- Vor dem Öffnen des Generators ist dieser auszuschalten und alle Steckverbinder und Kabel sind zu entfernen (siehe <u>Kapitel 11 "Außer-</u> <u>betriebnahme / Batterieentnahme", Seite 84).</u>
- Ein Batteriewechsel ist nicht erlaubt. Durch Einsatz eines falschen Batterietyps besteht Explosionsgefahr (siehe <u>Kapitel 11 "Außerbe-</u><u>triebnahme / Batterieentnahme", Seite 84)</u>.
- Beim Betrieb der Elektroden kann Ozon entstehen. Die in der Nähe der Elektroden entstehende Ozonkonzentration hängt von einer Vielzahl von Randbedingungen wie Einbauort, Elektrodenstrom und -spannung, Luftzirkulation usw. ab und kann daher nicht allgemein angegeben werden. Wenn am Einbauort der Elektrode maximale Arbeitsplatzkonzentrationen von Ozon beachtet werden müssen, ist die Konzentration vor Ort nachzumessen.

Zur Beurteilung der Ozonkonzentration am Arbeitsplatz dient der AGW-Wert. Der Anwender ist verpflichtet, sicherzustellen, dass der im jeweiligen Land maximal zulässige AGW-Wert unterschritten wird. Zum Beispiel darf in Deutschland die beim Betrieb des Systems auftretende Ozonkonzentration den Richtwert auf Basis internationaler Grenzwerte von 0,06 ml/m³ (0,12 mg/m³) nicht übersteigen.

Aufladung von Personen

Bei fachgerechtem Elektrodeneinbau ist eine Aufladung von Personen unwahrscheinlich. Grundsätzlich muss leitfähige Fußbekleidung getragen werden.

Beachten Sie bitte alle nationalen Vorschriften bezüglich elektrostatischer Aufladung (z.B. TRGS 727 in Deutschland, "Vermeidung von Zündgefahren infolge elektrostatischer Aufladung").

Hinweise für Performance Level Anwendungen:

- Das zu verwendende externe 24 V DC Netzteil muss nach den Normen EN 60950-1 oder EN 62368-1 geprüft sein bzw. muss die Anforderungen an PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) erfüllen (siehe <u>Kapitel 3.8.1 "Anschluss Versorgungsspannung 24 V DC", Seite 24, Kapitel 8 "Technische Daten POWER CHARGER PC___", Seite 76).
 </u>
- Beim Einsatz des Generators im Zusammenhang mit der Funktionalen Sicherheit nach DIN EN 13849 ist das redundante Schalten der Freigabe notwendig. Hierzu sind die beiden Signale "Freigabe +" und "Freigabe -" getrennt voneinander zu schalten; ein festes Verdrahten der beiden Freigabesignale +/- ist ausdrücklich verboten (siehe <u>Kapitel</u> <u>3.10.1 "Analoge Schnittstelle Aufladung", Seite 28, Kapitel 3.10.2</u> <u>"Analoge Schnittstelle Entladung", Seite 30</u>).
- Freigabe Analoge Schnittstelle Achten Sie auf korrekten Anschluss der Signale, um eine Beschädigung des Generators zu vermeiden. Für die Schnittstellenkabel sind grundsätzlich geschirmte Kabel zu verwenden; der Schirm ist beidseitig aufzulegen (siehe Kapitel 3.10.1 "Analoge Schnittstelle Aufladung", Seite 28, Kapitel 3.10.2 "Analoge Schnittstelle Entladung", Seite 30).
- Die Freigabesignale der Auf-/Entladung müssen mindestens 1 x jährlich für mindestens 400 ms ausgeschaltet werden, um Fehler in der Freigabelogik zu erkennen.
- Um die einwandfreie Funktion der Elektroden sicherzustellen, müssen diese mindestens einmal wöchentlich gereinigt werden (siehe <u>Kapitel</u> <u>5.2 "Aufladeelektroden / Entladeelektroden", Seite 63</u>).
- An den Eingangssteckern der 24 V DC Versorgungsspannung, den analogen Schnittstellen der Auf- und Entladung sowie den Feldbusschnittstellen darf die Spannung 60 V nicht überschreiten (siehe <u>Kapitel</u> <u>3.8.1 "Anschluss Versorgungsspannung 24 V DC", Seite 24, Kapitel 8</u> <u>"Technische Daten POWER CHARGER PC___", Seite 76</u>).

Installation 3.

3.1 Montage des Hochspannungsgenerators

Das Gerät ist für die Wandmontage vorbereitet. Die Befestigung erfolgt an den Befestigungslaschen. Bei der Montage des Gerätes ist darauf zu achten, dass die Bedienelemente und Anschlussbuchsen gut zugänglich sind und eine Kontrolle des Gerätes möglich ist.

Der Montageort muss trocken und möglichst staubfrei und die Luftzirkulation darf nicht beeinträchtigt sein.

BA-de-3041-2105_PC

Abb. 5:

Montage des

generators,

Montageposition

In Abb. 5: "Montage des Hochspannungsgenerators, vertikaler Einbau" und Abb. 6: "Montage des Hochspannungsgenerators, horizontal" sind die beiden zulässigen Einbaupositionen dargestellt. Es ist darauf zu achten, dass die zulässige Umgebungstemperatur auf allen Seiten des Gehäuses und zu jeder Zeit nicht überschritten wird.

Abb. 6: Montage des Hochspannungsgenerators, horizontal

3.2 Anschluss Erdverbindung

Der Anschluss der Erdverbindung ist für die gesamte Betriebsdauer des Generators dauerhaft sicher zu stellen. Das Erdungskabel sollte einen Mindestquerschnitt von 1,5 mm² aufweisen und auf kürzestem Weg leitfähig mit dem Maschinengestell verbunden werden. Bei einer Leitungslänge von > 0,5 m ist ein Querschnitt von mindestens 2,5 mm² zu verwenden. Eltex empfiehlt die Verwendung des im Lieferumfang enthaltenen Erdungskabels.

Erdungsklemme

Das Erdungskabel ist in den seitlichen Schlitz der geöffneten Klemme so weit einzuführen, dass es auf der gegenüberliegenden Seite hervorsteht. Danach die integrierte Sicherung der Klemme bis zum Anschlag (5 Nm) anziehen.

3.3 Installation der Hochspannungskabel

- Beim Verlegen der Hochspannungskabel ist ein Mindestbiegeradius von 10 x Außendurchmesser einzuhalten.
- Die Hochspannungskabel dürfen nicht mit Metallschellen befestigt werden.
- Eine Verlegung über scharfe Kanten (Krümmungsradius <5 mm) ist nicht zulässig.
- Zwischen Niederspannungs- und Hochspannungskabeln ist ein Mindestabstand von 50 mm einzuhalten; ist dies nicht möglich, so sind die Niederspannungskabel abzuschirmen.
- Werden Hochspannungskabel durch Bohrungen aus leitfähigen, geerdeten Werkstoffen geführt, berechnet sich der minimale Bohrungsdurchmesser D wie folgt aus der Wandstärke des durchbohrten Materials:

Bohrungsdurchmesser D (mm) = 60 mm² / Wandstärke (mm) Beispiel Wandstärke 2 mm: D = 60 mm² / 2 mm = 30 mm Die Bohrungskanten sind mit dem größtmöglichen Radius zu versehen und die Kabel mittels eines Isolierstücks zu zentrieren.

- Bei ungeerdeten, leitfähigen Gegenständen in der Nähe (≤2 m) des Hochspannungskabels ist mit influenzierter Aufladung und Funkenüberschlägen zu rechnen. Diese Gegenstände müssen daher geerdet werden.
- Bei Anwendungen mit bewegten Elektroden (z.B. Filmziehleisten) müssen die Hochspannungskabel so verlegt werden, dass im Anschlussbereich des Generators keine Kabelbewegungen auftreten.

3.4 Anschließbare Elektroden

3.4.1 Anschließbare Aufladeelektroden

Folgende Aufladeelektroden können an den Hochspannungsgenerator POWER CHARGER PC_ angeschlossen werden:

Systemvarianten PCSC, PCTL, PCRT und PCRM:

- R130A3 / R130A6 / R130A3L
- R120 eingeschränkter Spannungsbereich Betriebsanleitung R120 beachten
- R23ATR / R23ATR11
 mit fest angeschlossenem Hochspannungskabel
- EXR130A3 / EXR130A3L: nur f
 ür Generatoren folgender Auspr
 ägung: PC__/____E, PC__/___D eingeschr
 änkter Spannungsbereich, siehe Tabelle Seite 10

Systemvariante PCMT:

• R170A3 eingeschränkter Spannungsbereich, siehe Tabelle Seite 10

Abb. 7: Installation von Generator und Elektroden

- 1 Betriebsschalter EIN / AUS
- 2 Netzeingang 90 264 V AC
- 3 Netzeingang 24 V DC
- 4 Erdungsklemme
- 5 analoge Schnittstelle
- 6 Schnittstelle 1: Feldbus
- 7 Serviceschnittstelle
- 8 Schnittstelle 2: Feldbus
- 9 Hochspannungsausgang: Anschluss der Aufladeelektroden
- 10 Hochspannungskabel
- 11 Aufladeelektrode

Abb. 8: Anschluss des Hochspannungskabels

- 9 Hochspannungsausgang: Anschluss der Aufladeelektrode
 9.1 Hochspannungsausgang:
- Anschluss mit Verschlusskappe dargestellt
- 10 Hochspannungskabel

Z-116035by_5

Anwendungsbeispiel: Strom pro Meter aktive Elektrodenlänge: 1 mA Summe der aktiven Elektrodenlänge: 3 m => maximaler Gesamtstrom: 3 mA

Z-116035by_6

z-116035by_7

Abb. 9: Anschluss des Hochspannungskabels bei 60 kV

3.4.2 Anschließbare Entladeelektroden

Folgende Entladeelektroden können an den Hochspannungsgenerator POWER CHARGER PC__ angeschlossen werden:

- Variante "A" (nicht f
 ür Performance Level Anwendungen) R50 EXR5C
- Variante "C" R60 R60L
- Variante "P" RG52C

3.5 Anschluss der Aufladeelektrode an den Generator

Warnung! Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Generator unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

Vorgehensweise:

Die Elektrode wird über das vorkonfektionierte Hochspannungskabel angeschlossen. Die Hochspannungskabel werden bis zum Anschlag in die Buchse eingeführt. Anschließend wird die Verschraubung angezogen. Nicht benutzte Hochspannungsausgänge müssen mit der Verschlusskappe verschlossen sein.

9 / 9.1 Hochspannungsausgänge 10 Hochspannungskabel 9.1 Hochspannungsausgang mit Verschlusskappe dargestellt

Warnung!

Bei Anwendungen mit bewegten Elektroden (z.B. Filmziehleisten) müssen die Hochspannungskabel so befestigt werden, dass im Anschlussbereich des Generators keine Kabelbewegungen auftreten.

Abb. 10:

kabels

Anschluss des

Hochspannungs-

BA-de-3041-2105_PC

Ist keine Entladeelektrode an der jeweiligen Steckverbindung des Generators angeschlossen, muss diese unbedingt mit dem mitgelieferten Blindstopfen geschlossen werden.

Hinweis:

Die Verschraubung ist mit einem Drehmoment von 3 Nm zu befestigen.

Achtung!

Das Hochspannungskabel muss bis zum Anschlag (150 mm) in den Kabeleingang hineingeschoben werden! Der Anschlussbereich des Hochspannungskabels muss frei von Verschmutzungen sein!

3.6 Anschluss der Entladeelektrode an den Generator

Warnung!

Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Generator unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

Die Elektroden werden über das vorkonfektionierte Hochspannungskabel am Generator angeschlossen. Die Hochspannungskabel werden bis zum Anschlag in die Buchse eingeführt. Anschließend wird der Adapter in der Buchse mit dem Clip gesichert (siehe Abb. 11: "Anschluss der Hochspannungskabel").

Kabel ohne Adapter haben eine farbige Markierung auf dem Schutzschlauch. Diese Markierung muss bündig mit der Außenkante der Verschraubung abschließen. Kabel ohne Schutzschlauch und Kabel mit Steckadapter werden bündig eingesteckt und mit dem Clip gesichert.

Abb. 11: Anschluss der Hochspannungskabel

Z00004y

Warnung!

Bei Anwendungen mit bewegten Elektroden (z.B. Filmziehleisten) müssen die Hochspannungskabel so befestigt werden, dass im Anschlussbereich des Netzgerätes keine Kabelbewegungen auftreten.

Ist keine Entladeelektrode an der jeweiligen Steckverbindung des Generators angeschlossen, muss diese unbedingt mit dem mitgelieferten Blindstopfen geschlossen werden.

3.7 Lösen des Hochspannungskabels

Warnung! Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Generator unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

3.8 Anschluss der Versorgungsspannung

Damit bei stillstehender Maschine keine Hochspannung an den Elektroden anliegt, sollte die Versorgungsspannung zum Generator über einen Maschinenkontakt frei gegeben werden, der bei nicht laufender Maschine die Hochspannung abschaltet.

Warnung!

Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Generator unterbrochen wurde,
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

3.8.1 Anschluss Versorgungsspannung 24 V DC

Die Versorgungsspannung des Hochspannungsgenerators wird über den 4-poligen Rundsteckverbinder an das 24 V DC Versorgungsnetz angeschlossen.

Abb. 12: Steckerbelegung 24 V DC Stecker Versorgungsspannung

F00061y

Achtung!

Das zu verwendende externe 24 V DC Netzteil muss nach den Normen EN 60950-1 oder EN 62368-1 geprüft sein bzw. muss die Anforderungen an PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) erfüllen.

Aufgrund der Leistungsaufnahme des Hochspannungsgenerators sind zur Reduzierung der Kabelverluste größtmögliche Kabelguerschnitte und kurze Leitungen zu verwenden.

Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

3.8.2 Anschluss Versorgungsspannung 90 - 264 V AC

Die Netzspannung von 90 - 264 V AC wird über den standardisierten Gerätestecker der Form C13 angeschlossen.

F00059y

Abb. 13:

90 - 264 V AC

gungspannung

Achtung!

Bei Kundenbeistellung:

Zur Verhinderung einer Unterbrechung der Spannungsversorgung durch Vibration oder anderen mechanischen Einflüssen, empfiehlt Eltex die Verwendung eines Kaltgerätesteckers, Form C13, mit integrierter Verriegelung; siehe Kapitel 10 "Ersatzteile und Zubehör", Seite 82.

3.9 Feldbus-Schnittstellen

Warnung! Stromschlaggefahr!

Die Arbeiten dürfen nur durchgeführt werden, wenn:

- die Versorgungsspannung zum Generator unterbrochen wurde, ٠
- die Maschine still steht, da die Elektroden bei laufender Materialbahn Ladung aufnehmen.

Achtung!

Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

3.9.1 CANopen® (optional)

Die Generatoren POWER CHARGER PC__ unterstützen das nach CiA 301 standardisierte CANopen® Protokoll. Der Generator meldet sich als Slave mit dem Geräteprofil 401 für Ein-/Ausgabegeräte im Netzwerk an. Es werden folgende CANopen® Dienste unterstützt:

- Emergency Protokoll (EMCY) zur Übertragung von Fehler- und Warnungsereignissen
- Heartbeat Producer zur Knotenüberwachung
- Statisches Mapping f
 ür PDO Transfer Alle wichtigen Daten sind in PDOs verf
 ügbar.
- Umgehender SDO Transfer
 Segmentierter Transfer und Block Transfer sind nicht unterstützt.
- CANopen® Objekte zum Speichern und Wiederherstellen von Parameterdaten
- LSS-Dienste zur Einstellung der Knotenadresse und Baudrate (siehe Kapitel 4.4).

Die komplette Beschreibung des CANopen® Protokolls für den Generator POWER CHARGER sowie die dazugehörige EDS-Datei "PC.eds" sind in separaten Dateien verfügbar.

Busanfang und Busende sind mit einem Busabschluss zu versehen.

Steckerbelegung CANopen®

Steckverbinder M12x1 A-kodiert

	د. د	450			Aderfarbe	
	43		1	Schirm		
			2	NC	rot	
		(3 I)	3	GND-Bus	schwarz	
	$\left(\mathbf{\Theta} \cdot \mathbf{\Theta}_{5} \cdot \mathbf{\Theta}_{3} \right)$	5 1	4	CAN-H	weiß	
una	$\langle \phi \rangle$		5	CAN-L	blau	
nale/	4		St	eckergehäus	se: Schirm	
	Buchse female	Stecker male				

Abb. 14: Steckerbelegung CAN-Bus female/ male

Achtung!

Beim Einsatz der Variante mit CANopen® ist für beide Busleitungen ein für CAN-Bus-Netzwerke geeignetes Kabel mit einem Wellenwiderstand von 120 Ohm zu verwenden; nur so ist eine einwandfreie Funktion des CAN-Netzwerkes gewährleistet.

Die in CiA 303-1 spezifizierten maximalen Kabellängen in Abhängigkeit der Übertragungsgeschwindigkeit sind für das gesamte Netzwerk sowie für die einzelnen Stichleitungen zu beachten.

:00052y + F00053y

3.9.2 ModbusTCP (optional)

Die Generatoren der POWER CHARGER Familie können mittels des TCP/IP Standard ModbusTCP Protokolls in ein bestehendes LAN-Netzwerk eingebunden werden. Alle Varianten mit dieser Option unterstützen folgende Funktionen:

- 10/100 Mbit/s Übertragung
- DHCP Protokoll zur Einstellung der IP Adresse (standardmäßig aktiviert)
- Feste Einstellung der IP Adresse möglich
- Zyklischer Abruf der Prozessdaten
- Einstellung und Auslesen des Parametersatzes
- LED Ausgabe für Netzwerk- und Verbindungsstatus

Die komplette Beschreibung der unterstützten Befehle und Zuordnung von Prozessdaten, Parametern, etc. der jeweiligen Register sind in separaten Dateien verfügbar.

Achtung!

Für den Anschluss des Generators in das Netzwerk sind geeignete, geschirmte Kabel zu verwenden; der Schirm ist an beiden Enden an einer geeigneten Stelle aufzulegen. Kabel der Kategorie Cat 5e oder höher sind bevorzugt einzusetzen.

Abb. 15: Steckerbelegung Steckverbinder M12x1 D-kodiert

2 x Buchse female

=00055y

3.10 Analoge Schnittstelle

3.10.1 Analoge Schnittstelle Aufladung

Die analoge Schnittstelle ermöglicht das Einbinden des Generators an eine SPS oder andere Umgebungen, die 0...10 V- oder 0...20 mA-Schnittstellen verwenden. Bei Verwendung einer analogen Schnittstelle ist eine Hardware-Freigabe zwingend erforderlich.

Achtung!

- Bitte achten Sie auf korrekten Anschluss der Signale, um eine Beschädigung des Generators zu vermeiden.
- Zur Verdrahtung der analogen Schnittstelle sind geschirmte Kabel zu verwenden; der Schirm ist beidseitig aufzulegen.
- Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

Steckerbelegung analoge Schnittstelle

Abb. 16: Steckerbelegung analoge Schnittstelle Aufladung

1/2 1 Freigabe + Aderfarbe: weiß

2 Freigabe -

Aderfarbe: braun

Isolierter Eingang Hochspannungsfreigabe über externes 24 V-Signal.

U = 24 V DC ±10 %, I <20 mA

Beim Einsatz des Generators im Zusammenhang mit der Funktionalen Sicherheit nach DIN EN 13849 ist das redundante Schalten der Freigabe notwendig. Hierzu sind die beiden Signale "Freigabe +" und "Freigabe -" getrennt voneinander zu schalten; ein festes Verdrahten der beiden Freigabesignale +/- ist ausdrücklich verboten.

3 +24 V DC Ausgang ±20 %, I <50 mA

Aderfarbe: grün

4 Störmeldeausgang:

Aderfarbe: gelb

0 V:

Der Generator ist nicht bereit bzw. hat einen Fehler detektiert; die Hochspannung ist ausgeschaltet.

24 V DC:

Der Generator ist in Betrieb und es sind keine Fehler aufgetreten. 24 V DC / I < 50 mA

F00056y

5 Istwert I

Aderfarbe: grau

0...20 mA (Ausgang): 0 mA entsprechen 0 mA Ausgangsstrom 20 mA entsprechen 7,5 mA Ausgangsstrom Max. Bürde: 500 Ω

6 Analogsollwert

Aderfarbe: rosa

zur Einstellung des Spannungs- oder Stromsollwerts (Eingang); siehe nachfolgende Tabelle "Einstellmöglichkeiten"

7 Istwert U

Aderfarbe: blau

0…20 mA (Ausgang):

0 mA entsprechen 0 kV, 20 mA entsprechen U_{max} siehe Variantenübersicht Tabelle Seite 9

8 GND für 24 V DC Ausgang

Aderfarbe: rot

Störmeldungen, Analogsollwert und Istwerte

Einstellungsmöglichkeiten:

Aus	Keine Veränderung des Sollwerts		
Strom 0 - 20 mA	20 mA entsprechen dem maximalen Ausgangswert *		
Spannung 0 - 10 V	10 V entsprechen dem maximalen Ausgangswert *		

* Werte U_{max} bzw. I_{max} siehe Tabelle Seite 11

Der Störmeldeausgang ist bei Aktivierung des Limitersignals zusätzlich nutzbar; es erfolgt eine Anzeige bei Erreichung eines Limits:

- Störmeldeausgang 0 V: Limiter aktiv
- Störmeldeausgang 24 V DC: kein Limiter aktiv

3.10.2 Analoge Schnittstelle Entladung

Die analoge Schnittstelle ermöglicht das Einbinden des Generators an eine SPS oder andere Umgebungen, die 0...10 V- oder 0...20 mA-Schnittstellen verwenden. Bei Verwendung einer analogen Schnittstelle ist eine Hardware-Freigabe zwingend erforderlich.

Achtung!

- Bitte achten Sie auf korrekten Anschluss der Signale, um eine Beschädigung des Generators zu vermeiden.
- Zur Verdrahtung der analogen Schnittstelle sind geschirmte Kabel zu verwenden; der Schirm ist beidseitig aufzulegen.
- Die Spannung darf an den einzelnen Kontakten 60 V DC nicht überschreiten.

Steckerbelegung analoge Schnittstelle

Abb. 17: Steckerbelegung analoge Schnittstelle Entladung

1/4 1 Freigabe + Aderfarbe: weiß

4 Freigabe -Aderfarbe: gelb

Isolierter Eingang Hochspannungsfreigabe über externes 24 V-Signal.

U = 24 V DC ±10 %, I <20 mA

Beim Einsatz des Generators im Zusammenhang mit der Funktionalen Sicherheit nach DIN EN 13849 ist das redundante Schalten der Freigabe notwendig. Hierzu sind die beiden Signale "Freigabe +" und "Freigabe -" getrennt voneinander zu schalten; ein festes Verdrahten der beiden Freigabesignale +/- ist ausdrücklich verboten.

- 2 +24 V DC Ausgang ±20 %, I <50 mA Aderfarbe: braun
- **3 GND für 24 V DC Ausgang, Meldeausgang Verschmutzung** Aderfarbe: grün
- 5 Meldeausgang Verschmutzung Aderfarbe: grau

0 V: Keine Verschmutzung erkannt 24 V DC: Verschmutzung erkannt

=00052y

3.11Einsatz Eltex Signalkabel CS und Netzkabel KN

Bei Verwendung der bei Eltex optional erhältlichen Signalkabel CS und Netzkabel KN sind für den Anschluss der einzelnen Leitungen nachstehende Daten, farbliche Markierungen und Biegeradien zu beachten.

Verfügbare Kabelvarianten

- CS/A Signalkabel Analogschnittstelle Aufladung CS/AMO Anschluss Generator: Stecker gerade Anschluss Kunden: offenes Ende
- CS/E Signalkabel Analogschnittstelle Entladung CS/EMO Anschluss Generator: Stecker gerade Anschluss Kunden: offenes Ende

• CS/C Signalkabel CANopen®

CS/CFFG	Anschluss Generator: Buchse gerade		
	Anschluss Kunden: Buchse gerade		
CS/CFFW	Anschluss Generator: Buchse gerade		
	Anschluss Kunden: Buchse gewinkelt		
CS/CFMG	Anschluss Generator: Buchse gerade		
	Anschluss Kunden: Stecker gerade		
CS/CFMW	Anschluss Generator: Buchse gerade		
	Anschluss Kunden: Stecker gewinkelt		
CS/CFO	Anschluss Generator: Buchse gerade		
	Anschluss Kunden: offenes Ende		
CS/CMFG	Anschluss Generator: Stecker gerade		
	Anschluss Kunden: Buchse gerade		
CS/CMFW	Anschluss Generator: Stecker gerade		
	Anschluss Kunden: Buchse gewinkelt		
CS/CMMG	Anschluss Generator: Stecker gerade		
	Anschluss Kunden: Stecker gerade		
CS/CMMW	Anschluss Generator: Stecker gerade		
	Anschluss Kunden: Stecker gewinkelt		
CS/CMO	Anschluss Generator: Stecker gerade		
	Anschluss Kunden: offenes Ende		
CS/C Sian	alkabel Feldbus Industrial Ethernet		
CS/IMMC	Anschluss Generator: Stecker gerade		
	Anschluss Concrator. Oteoker gerade		

CS/IMMV Anschluss Generator: Stecker gerade Anschluss Kunden: Stecker gerade Anschluss Kunden: Stecker gewinkelt CS/IMR Anschluss Generator: Stecker gerade Anschluss Kunden: RJ45 Stecker

KN/G Netzkabel Versorgungsspannung AC KN/GA Anschluss Generator: Netzstecker C13 Anschluss Kunden: Netzstecker Schutzkontakt KN/GB Anschluss Generator: Netzstecker C13 Anschluss Kunden: Netzstecker Schweiz KN/GD Anschluss Generator: Netzstecker C13 Anschluss Generator: Netzstecker C13 Anschluss Generator: Netzstecker C13 Anschluss Kunden: offenes Ende

 KN/H Netzkabel Versorgungsspannung 24 V KN/HD Anschluss Generator: Stecker gerade Anschluss Kunden: offenes Ende

Belegung der Kabel für Anschluss offenes Ende

Ader-Nr.	Ader-Farbe	Signal
1	weiß	Freigabe +
2	braun	Freigabe -
3	grün	+24 V DC Ausgang
4	gelb	Störmeldeausgang
5	grau	Istwert I
6	rosa	Analogsollwert
7	blau	Istwert U
8	rot	GND
	Schirm	Erdpotential

CS/A Signalkabel Analogschnittstelle Aufladung

CS/E Signalkabel Analogschnittstelle Entladung

Ader-Nr.	Ader-Farbe	Signal
1	weiß	Freigabe +
2	braun	+24 V DC Ausgang
3	grün	GND
4	gelb	Freigabe -
5	grau	Meldeausgang Verschmutzung
	Schirm	Erdpotential

CS/C Signalkabel CANopen®

Ader-Nr.	Ader-Farbe	Signal
2	rot	+24 V DC Ausgang (optional)
3	schwarz	GND
4	weiß	CAN-H
5	blau	CAN-L
	Schirm	Erdpotential

KN/H Netzkabel Versorgungspannung 24 V DC

Ader-Nr.	Ader-Farbe	Signal
1	weiß	+24 V DC
2	braun	+24 V DC
3	grün	0 V
4	gelb	0 V

KN/G Netzkabel Versorgungsspannung AC

Ader-Nr.	Ader-Farbe	Signal
1	braun oder schwarz	L
2	blau oder schwarz	Ν
3	grün / gelb	Schutzleiter

Mindestbiegeradien

Bei der Verlegung der Kabel sind folgende Mindestbiegeradien zu beachten:

Kabel	CS/A	CS/E	CS/C	CS/I
fest verlegt	38,4 mm	34,8 mm	55,0 mm	35,0 mm
bewegt	96,0 mm	87,0 mm	110,0 mm	100,0 mm

Kabel	KN/G	KN/H
fest verlegt	32,4 mm	36,6 mm
bewegt	101,5 mm	91,5 mm

4. Betrieb

Der aktuelle Betriebszustand des Generators wird bei allen Varianten durch eine LED Anzeige dargestellt.

	POWER CHARGER 30
Abb. 18: Betriebszustand mit leuchtender LED Anzeige,	O POWER O POLLUTION HV ON BUS O STATUS O DIAG INK Oma 2 4 6 O O O O O O O O O O O O O O O O O O O
dargestellt für Vari- ante PC/X und PC/P	
	POWER CHARGER 30
Abb. 19:	\bigcirc POWER \bigcirc POLLUTION \bigcirc CHARGE \bigcirc BUS
Betriebszustand mit leuchtender	\bigcirc STATUS \bigcirc DIAG \bigcirc DISCHARGE \bigcirc LINK
LED Anzeige dar- gestellt für Varian- ten PC/A und	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
PC/C (mit akti- ver Entladung)	

4.1 Inbetriebnahme

Sind alle Anschlüsse und die Installation korrekt durchgeführt, ist das System betriebsbereit und die Versorgungsspannung kann eingeschaltet werden.

4.2 Funktionsüberwachung

Eine einwandfreie Funktion des Gerätes wird über Leuchtdioden (LED) und einen Störmeldeausgang signalisiert.

Störmeldeausgang

Anzeige der Funktion	Zustand
0 V	Fehler bzw. der Generator ist nicht betriebs- bereit
24 V	Spannungsversorgung eingeschaltet, kein Fehler

Meldeausgang Verschmutzung

nur für Varianten mit integrierter aktiver Entladung

Anzeige der Funktion	Zustand
0 V	Keine Verschmutzung erkannt
24 V	Verschmutzung erkannt

• LED POWER

LED POWER	Zustand
AUS	Spannungsversorgung nicht eingeschaltet oder Fehler in der Spannungsversorgung
Grün Dauerleuchten	Spannungsversorgung eingeschaltet

• LED STATUS

Anzeige der einzelnen Betriebszustände

LED STATUS	Zustand
Rot Dauerleuchten	Initialisierung
Rot blinkend	Störung
Rot 1 x blinkend	Systemstörung
Grün Dauerleuchten	Hochspannung EIN
Grün blinkend	Warnung und Hochspannung EIN
Grün 1 x blinkend	Generator im Standby, Hochspannung aus
Grün 2 x blinkend	Warnung und Hochspannung AUS

LED POLLUTION

LED POLLUTION	Zustand
AUS	Keine Verschmutzung erkannt
Gelb Dauerleuchten	Verschmutzung erkannt

LED DIAGNOSE

LED DIAG	Zustand
AUS	Kein Diagnosefehler erkannt
Rot Dauerleuchten	Diagnosefehler erkannt

• LED CHARGE

nur für Varianten mit integrierter aktiver Entladung

LED CHARGE	Zustand	
AUS	Hochspannung Aufladung AUS	
Grün Dauerleuchten	Hochspannung Aufladung EIN	

• LED DISCHARGE

nur für Varianten mit integrierter aktiver Entladung

LED DISCHARGE	Zustand	
AUS	Hochspannung Entladung AUS	
Grün Dauerleuchten	Hochspannung Entladung EIN	

• LED HV ON

nur für Varianten ohne integrierter aktiver Entladung

LED HV ON	Zustand	
AUS	Hochspannung AUS	
Grün Dauerleuchten	Hochspannung EIN	

• LED BUS, LED LINK

Anzeige des Status für das jeweilige Busnetzwerk.

Bei Varianten ohne Feldbusunterstützung sind diese LED dauerhaft aus.

Variante mit CANopen® (optional)

Darstellung der nach CiA 303-3 spezifizierten LED-Ausgaben für den CAN-Bus.

LED BUS	Zustand	
AUS	CANopen® nicht initialisiert	
Grün Dauerleuchten	CANopen® Device in OPERATIONAL Zustand	
Grün 1 x blinkend	CANopen® Device in STOPPED Zustand	
Grün langsam blinkend (2,5 Hz)	CANopen® Device in PREOPERATIONAL Zustand	
Rot / Grün abwechselnd blinkend (10 Hz)	Automatische Baudratenerkennung oder LSS Service in Bearbeitung	
Rot Dauerleuchten	CAN Controller ist ausgeschaltet	
Rot 1 x blinkend	Übertragung zu vieler Error Frames über den CAN-Bus	
Rot 2 x blinkend	CANopen® Fehlerüberwachungsereignis	
Rot 3 x blinkend	CANopen® Sync Fehler	
Rot / Grün abwechselnd blinkend (unterschiedliche, wechselnde Leuchtdauer)	Fehler CANopen® Kommunikation, Gerät neu starten	

Hinweis!

Störungen werden nicht gespeichert. Eine Unterbrechung der Versorgungsspannung führt automatisch zum Wegfall der Störungsmeldung.

Variante mit ModbusTCP (optional)

LED BUS	Zustand	
AUS	Keine IP Adresse vergeben	
Grün Dauerleuchten	Modbus Nachrichten korrekt empfangen	
Grün blinkend	Warten auf 1. Modbus Nachricht	
Rot Dauerleuchten	Ungültige IP Adresse	

LED LINK	Zustand	
AUS	Keine Verbindung	
Grün Dauerleuchten	Verbindung 100 Mbit/s erkannt	
Grün blinkend	Datenaustausch 100 Mbit/s	
Gelb Dauerleuchten	Verbindung 10 Mbit/s erkannt	
Gelb blinkend	Datenaustausch 10 Mbit/s	

LED BALKEN

Optische Darstellung der aktuellen Istwerte der Aufladespannung bzw. des Aufladestroms. Durch Betätigen der +/- Tasten kann der Sollwert mittels der Tastatur verändert werden.

Je nach ausgewähltem Modus der Darstellung ist die Spannung bzw. der Strom mit Hilfe der Skala ablesbar. Die Skala ist in 15 Schritte unterteilt und startet links mit dem Wert 0. Das rechte Ende stellt das Maximum der Spannung bzw. des Stroms dar. Zwischenschritte sind durch ein Blinken angezeigt.

Nach dem Einschalten der Versorgungsspannung ist der aktuell eingestellte Sollwert in der Balkenanzeige dargestellt.

LED Balken kV	Zustand	
AUS	Balkendarstellung Aufladestrom	
Grün Dauerleuchten	Balkendarstellung Aufladespannung	
Gelb Dauerleuchten	Spannungsbegrenzung aktiv	
Gelb blinkend	Darstellung Setup Menu	

LED Balken mA	Zustand	
AUS	Balkendarstellung Aufladesspannung	
Grün Dauerleuchten	Balkendarstellung Aufladestrom	
Gelb Dauerleuchten	Strombegrenzung aktiv	
Gelb blinkend	Darstellung Setup Menu	

4.3 Freigabe der Hochspannung

Zur Freigabe der Hochspannung müssen zwei Schritte ausgeführt werden:

- Hardware-Freigabe siehe Kapitel 3.10
- Software-Freigabe wie nachstehend beschrieben

Optionen der Software-Freigabe

Automatisch

Softwarefreigabe erfolgt automatisch nach dem Hochfahren des Generators.

Analoger Sollwert

Bei Überschreiten des Werts für die minimale Spannung bzw. Strom erfolgt das Setzen der Softwarefreigabe; bei Unterschreitung des Minimalwerts wird die Freigabe gelöscht.

Integrierte Bedienung

Die Freigabe wird direkt über einen Tastendruck (ON/OFF) der integrierten Bedienung aktiviert bzw. deaktiviert.

Bei Betrieb der Generatoren mit dem Visualisierungssystem ECC wirkt eine dort für den Generator gesetzte Freigabe vorrangig. Eine Deaktivierung am Generator ist nicht möglich, wenn die Freigabe gleichzeitig an dem Visualisierungssystem ECC gesetzt wurde. Die Deaktivierung des Generators muss über das Visualisierungssystem ECC erfolgen.

CANopen®

Über das CANopen®-Bus übertragende Kommando kann die Freigabe gesetzt bzw. gelöscht werden.

• Feldbus Ethernet basiert Die Freigabe ist über den Ethernet basierten Feldbus (z.B. ModbusTCP) steuerbar.

Achtung!

Es ist darauf zu achten, dass bei Varianten mit aktiver Entladung und der entsprechenden Parametrierung der Entladung auf Modus "Aktiv" die Hardwarefreigabe für die Entladung immer **vor** der Freigabe für die Aufladung zu setzen ist.

4.4 Integrierte Bedienelemente

Einstellungen am Hochspannungsgenerator erfolgen über die integrierten Bedienelemente. Das Quittieren von Fehler- bzw. Warnungsmeldungen ist direkt am Gerät möglich.

Abhängig von der Variante des Generators erfolgt die Bedienung über die integrierte Folientastatur oder einen Touchscreen.

4.4.1 Bedienung Folientastatur

Über die Folientastatur erfolgen die Einstellung einiger Parameter, des Sollwerts und das Quittieren von Fehler- und Warnungsmeldungen.

Beschreibung der Tasten

- Taste +
 Taste zur Veränderung der Einstellung
- Taste Taste zur Veränderung der Einstellung
- Taste kV / mA Umschaltung der Anzeige des LED Balkens

• Taste Setup Aktivierung des Setup Menü

- Taste OK Bestätigung der Einstellung
- Taste ON/OFF
 An- bzw. Abschalten der Hochspannungsausgabe

Abb. 20:

Folientastatur

Veränderung des Sollwerts

Mit den +/- Tasten kann der Sollwert verändert werden. Je nach ausgewähltem Modus erfolgt die Änderung des Spannungs- bzw. Stromsollwerts (spannungskonstant ab 1.500 V, stromkonstant ab 50 µA). Die Tasten können einzeln bzw. anhaltend gedrückt werden.

Der Sollwert ist nur bei beendetem Setup Menü änderbar.

Die Anzeige des LED Balken wechselt von der Darstellung des aktuellen Istwerts in die Anzeige des Sollwerts. Nach dem Loslassen der Taste wechselt die Darstellung automatisch wieder in die Istwertdarstellung zurück.

Umschaltung der Balkendarstellung

Durch Betätigen der Taste kV / mA wechselt die Ansicht von der aktuellen Anzeige der Hochspannung bzw. Strom in die jeweilig andere Darstellung.

Der Wechsel erfolgt bei jedem erneuten Tastendruck und ist nur bei deaktiviertem Setup Menü möglich.

An- bzw. Abschalten der Hochspannung

Durch Betätigen der ON/OFF Taste wird die Ausgabe der Hochspannung aktiviert bzw. deaktiviert; die Einstellung "Freigabe über integrierte Bedienelemente" muss aktiviert sein (Standardeinstellung).

Speichern der Parameter

Zum Speichern des gesamten Parametersatzes ist die OK Taste bis zum zweimaligen Aufblinken der LEDs zu halten.

Laden der Werkseinstellungen

Zum Laden der Werkseinstellungen sind die Tasten +, – und OK so lange gedrückt zu halten bis die LEDs zweimal aufblinken.

Quittieren Fehler- bzw. Warnungsmeldungen

Fehler- und Warnungsmeldungen sind über eine gemeinsame Tastenkombination quittierbar. Hierzu sind die drei Tasten Setup, OK und kV / mA so lange zu halten bis die LEDs zweimal aufblinken. Die Quittierung erfolgt nach einer internen Überprüfung des Systems. Die erfolgreiche Quittierung wird über die LED "Status" dargestellt. Sind mehrere Fehler bzw. Warnungen aufgetreten, ist das Quittieren der Meldung mehrfach vorzunehmen.

Setup Menü

Über das Setup Menü sind mehrere Einstellungen möglich:

• Betriebsart Entladung nur für Varianten mit integrierter aktiver Entladung

passive oder aktive Entladung

Betriebsart Aufladung

Spannungskonstant oder Stromkonstant

Freigabe Option

Einstellung der unterschiedlichen Freigabe-Optionen

Analog Sollwert

Auswahl des Modus zur Einstellung des Sollwerts über die analoge Schnittstelle

CANopen® Knotenadresse

Nur bei Varianten mit integriertem CANopen® Modul möglich. Einstellung der Knotenadresse des Geräts für das CANopen Netzwerk.

CANopen® Baudrate

Nur bei Varianten mit integriertem CANopen® Modul. Auswahl der Baudrate des Geräts für das CANopen® Netzwerk.

Der Wechsel in das Setup Menü erfolgt durch das Halten der Taste Setup bis die LEDs aufblinken und die beiden LEDs kV und mA gemeinsam gelb blinken. Mit der Taste OK sind die einzelnen vorgenommenen Einstellungen zu bestätigen. Das Menü wechselt danach umgehend zur nächsten Einstellung. Das Menü kann nicht abgebrochen und muss jeweils bis zum Ende durchgeführt werden. Beim Verlassen des Menüs erfolgt ein automatisches Speichern der vorgenommen Einstellungen.

Im rechten Teil des LED Balkens ist der derzeit ausgewählte Punkt im Setup Menü durch eine leuchtende LED dargestellt. Der linke Teil zeigt über die leuchtende LED die aktuelle Einstellung an.

	POWER CHARGER 30
Abb. 21:	O STATUS O DIAG O LINK
Bildausschnitt: "Setup Menu star- ten" mit leuchten- der mA und kV	
	SYSTEM MASTER
	\bigcirc POWER \bigcirc POLLUTION \bigcirc CHARGE \bigcirc BUS
Abb. 22: Bildausschnitt:	
"Setup Menu star- ten" mit leuchten-	Ima(%) 25 50 75 100 0 0 0 0 0 0
der mA und kV LED für	KV(%) 10 20 30 100
"System Master"	

Setup Menü starten

Taste Setup solange gedrückt halten bis beide LEDs kV und mA gemeinsam gelb blinken. Mit der Taste OK gelangen Sie zur nächsten Einstellung "Betriebsart".

Z-116036dy_4

Z-116036dy_13

BA-de-3041-2105_PC

Einstellung Betriebsart Entladung

nur für Varianten mit integrierter aktiver Entladung

Die 10. LED des Balkens von links leuchtet auf. Mit den Tasten + und – kann zwischen der Betriebsart "passive Entladung" und "aktive Entladung" ausgewählt werden. Für die passive Entladung leuchtet die äußerste linke LED und für die aktive Entladung die LED rechts daneben auf. Die Einstellung ist durch Drücken der Taste OK zu bestätigen.

Z-116036dy_12

Z-116036dy_14

Abb. 23: Bildausschnitt: "passive oder aktive Entladung" mit leuchtender 10. LED

Abb. 24: Bildausschnitt: "passive oder aktive Entladung" mit leuchtender 10. LED für "System Master"

Einstellung Betriebsart Aufladung

Die 11. LED des Balkens von links leuchtet auf. Mit den Tasten + und – kann zwischen der Betriebsart "spannungskonstant" und "stromkonstant" ausgewählt werden. Für den spannungskonstanten Betrieb leuchtet die äußerste linke LED und für den stromkonstanten Betrieb die LED rechts daneben auf. Die Einstellung ist durch Drücken der Taste OK zu bestätigen.

Bildausschnitt: "spannungs- oder stromkonstant" mit leuchtender 11. LED für "System Master"

Abb. 25:

Bildausschnitt: "spannungs- oder

Z-116036dy_5

Einstellung der Freigabe-Optionen

Die 12. LED des Balkens zeigt die Einstellung der Freigabe-Optionen an. Im linken Teil ist die aktuell ausgewählte Option dargestellt. Mit den Tasten + und – ist die Einstellung veränderbar. Es ist nur jeweiles eine Freigabe-Option auswählbar. Die Eingabe ist abschließend mit der Taste OK zu bestätigen.

- LED 1: Software Freigabe deaktiviert
- LED 2: Automatische Softwarefreigabe
- LED 3: Freigabe Analog Sollwert
- LED 4: Freigabe integrierte Bedienelemente Folientastatur Taste "ON/OFF"
- LED 5: Freigabe CANopen® Schnittstelle

LED 6: Freigabe Feldbus Ethernet basierte Schnittstelle

() mA(%) (2	50	(75)	100
0000	0000000	\odot	$\circ \circ \circ$
O kV(%) 1	20	30	100

Z-116036dy_6

Bildausschnitt: "Freigabe-Option" mit leuchtender

"System Master"

12. LED

für

Einstellung analoger Sollwert

Auswahl des Modus für die Einstellung des analogen Sollwerts. Die 13. LED des Balkens leuchtet auf. Mit den Tasten + und – ist die Einstellung für den analogen Sollwert auswählbar. Die Eingabe ist mit der Taste OK zu bestätigen.

Bei Varianten mit integriertem CANopen® Modul wechselt das Menü zu dem Punkt "Einstellung der CANopen® Knotenadresse". Ist die CANopen® Schnittstelle nicht vom Generator unterstützt, ist der nächste Menüpunkt "Setup beenden".

- LED 1: Analoger Sollwert aus
- LED 2: Analoger Sollwert Stromschnittstelle 0 20mA
- LED 3: Analoger Sollwert Spannungsschnittstelle 0 10V
- LED 4: Analoger Sollwert aus und Limitersignal aktiv
- LED 5: Analoger Sollwert Stromschnittstelle 0 20 mA und Limitersignal aktiv
- LED 6: Analoger Sollwert Spannungsschnittstelle 0 10 V und Limitersignal aktiv

Abb. 29: Bildausschnitt: "Einstellung des analogen Sollwerts" mit leuchtender 13. LED

Abb. 30: Bildausschnitt: "Einstellung des analogen Sollwerts" mit leuchtender 13. LED für "System Master"

\bigcirc mA	2	4	6	
000	0000	0000	$0 \xrightarrow{0} 0$	
$\bigcirc kV$	10	20	30	

• Einstellung CANopen® Knotenadresse

Die Einstellung der CANopen® Knotenadresse ist in zwei Schritte unterteilt - zunächst für die Zehner-Position für die Adresse 0 – 12, im zweiten Schritt erfolgt die Einer-Position der Adresse 0 – 9. Die Adresse berechnet sich wie folgt aus der Einstellung:

Knotenadresse = (Zehnerposition * 10) + Einerposition

Die 14. LED des Balkens zeigt die Einstellung der Adresse an. Mit den LEDs im linken Teil ist die aktuelle Auswahl dargestellt.

Abb. 31: Bildausschnitt: \bigcirc mA 2 4 6 "Einstellung CANopen® Kno-0000000000000 \bigcirc tenadresse" mit Z-116036dy_8 10 20 30 O kVleuchtender 14. LED Abb. 32: Bildausschnitt: (50 \bigcirc mA(%) (25) 75 (100) "Einstellung CANopen® Kno-000000000000 \bigcirc tenadresse" mit 20 $\bigcirc kV(\%)$ 10 30 100 leuchtender

Z-116036dy_18

14. LED

"System Master"

für

• Einstellung CANopen® Baudrate

Für die Auswahl der Baudrate leuchtet die 15. LED des Balkens auf. Im linken Teil des Balkens wird die aktuell ausgewählte Einstellung angezeigt. Mit den Tasten + und – kann die Einstellung verändert werden. Die Einstellung ist abschließen mit der Taste OK zu bestätigen. Das Setup wechselt automatisch in den Modus zur Beendigung. Die aktuelle Auswahl ist über die einzelnen LEDs dargestellt:

- LED 1: 1000 kBit/s
- LED 2: 800 kBit/s
- LED 3: 500 kBit/s
- LED 4: 250 kBit/s
- LED 5: 125 kBit/s
- LED 6: 50 kBit/s
- LED 7: 20 kBit/s
- LED 8: 10 kBit/s

Abb. 33: Bildausschnitt: "Einstellung CANopen® Baudrate" mit leuchtender 15. LED

\bigcirc mA	2	4 6	
000	0000	$\overline{)0000}$	$\circ \circ \times$
$\bigcirc kV$	10	20	30

Abb. 34: Bildausschnitt: "Einstellung CANopen® Baudrate" mit leuchtender 15. LED für "System Master"

Z-116036dy_

Z-116036dy_19

Setup beenden

Abschließend ist das Setup Menü durch Betätigen der Taste OK zu beenden. Alle Parameter werden nach einer internen Überprüfung auf ihre jeweilige Minimal- und Maximalwerte eingestellt. Danach erfolgt eine Speicherung des kompletten Parametersatzes. Die LED Anzeige wechselt nach Abschluss in die normale Anzeige des aktuellen Istwerts.

Wurden Einstellungen der CANopen® Knotenadresse und der Baudrate vorgenommen, ist ein Neustart des Generators notwendig. Alle anderen Einstellungen erfolgen unmittelbar nach Beendigung des Setup Menüs.

4.4.2 Bedienung Display

Nachfolgend sind die Bedienmöglichkeiten des im Generator integrierten Displays dargestellt:

Abb. 35: Übersicht Hauptmenü

1 Freigabe

Freigabe des Generators, Einstellung der Hochspannung

- 2 Konfiguration Einstellungen zur Konfiguration der Darstellung
- 3 Voreinstellung Speichern und Laden der Voreinstellungen zur Parametrierung des Generators
- 4 Hauptseite Wechsel zur Hauptseite
- 5 Eltex DEBUG / Meldungsübersicht Darstellung der aktuell aufgetretenen Fehler- bzw. Warnungsmeldungen
- 6 Status Darstellung der Statusinformationen des Generators
- 7 Parameter Darstellung der Parameterdaten zur Einstellung des Generators
- 8 Istwerte Übersicht aller verfügbarer Istwerte des Generators
- 9 Allgemein Anzeige allgemeiner Geräteinformationen

300332

4.4.2.1 Freigabe

Button "Freigabe" drücken.

Zum Sperren bzw. Setzen der Hochspannungsfreigabe ist der Schalter in der linken unteren Ecke in die jeweilige Position zu schieben. Eine mögliche Passwortabfrage ist mit derm korrektem Passwort zu bestätigen.

4.4.2.2 Konfiguration

Button "Konfiguration" drücken.

Abb. 36: Übersicht Konfiguration

4.4.2.2.1 ECC Benutzer

Button "ECC Benutzer" drücken.

Dialog zur Änderung des Passworts und An- bzw. Abmeldung des Benutzers.

Abb. 37: Passwort

Zum Ändern des Passworts das aktuelle Passwort im Feld "Aktuelles Passwort" eingeben; neues Passwort im Feld "Neues Passwort" und im Feld "Bestätigung Passwort" eingeben, mit "Passwort ändern" neues Passwort aktivieren, Rückmeldung abwarten.

Es stehen drei Passwortebenen zur Verfügung:

- Betrachter
 Passwort: 0001
- Benutzer
 Passwort: 2819
- Super Benutzer
- Passwort: 3517

4.4.2.2.2 Zugriffsverwaltung

Button "Zugriffsverwaltung" drücken.

Dialog zur Einstellung und Konfiguration der einzelnen Parameter für den jeweiligen Benutzerlevel.

Abb. 38: Zugriffsverwaltung

In der Auswahlliste des jeweiligen Parameters das Zugriffslevel auswählen und mit OK bestätigen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

4.4.2.2.3 Einstellungen (Sprache, Standardzugriffslevel, Darstellung Spannungs- und Stromwerte)

Button "Einstellungen" drücken.

Dialog zur Einstellung der Sprache für die Displayanzeige sowie der Hilfetexte, Einstellung / Konfiguration des Standardzugriffslevels und Einstellung der Darstellung der Spannungs- und Stromwerte.

Einstellungen				X	
Sprache Ar	zeige	Deutsch	•	•	
Standard Z	ugriffslevel	Benutzer	•		
Darstellung)	1.2kV 5.6mA	•		ľ
		Abbruch		Ok	ŀ
Freigabe Konf	guration Voreinstellung	Hauptseit	ė		UV410

Abb. 39: Einstellungen

In der Auswahlliste die gewünschte Sprache auswählen und mit OK bestätigen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

Mit der Einstellung des Standardzugriffslevel ist das Zugriffslevel konfigurierbar, welches beim Starten des Visualisierungssystems ECC und beim Abmelden des Benutzer aktiv ist.

Die Darstellung der Spannungs- und Stromwerte (Istwerte und Parameterwerte) können in drei unterschiedlichen Methoden dargestellt werden.

Beispiele:

- 1.2 kV / 5.6 mA
- 1.23 kV / 5.67 mA
- 1234 V / 5678 μA

4.4.2.2.4 Highlight Werte

Button "Highlight Werte" drücken.

Dialog zur Einstellung der Ansicht "Parameter / Status".

Abb. 40: Highlight Werte

> Abhängig von der Zugriffsberechtigung werden einstellbare Istwerte angezeigt. Parameter auswählen und mit OK bestätigen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

4.4.2.2.5 Werkseinstellungen

Button "Werkseinstellungen" drücken.

Nach Betätigen des Buttons "Werkseinstellungen" (siehe Kap. 4.4.2.2) werden nach einer Abfrage und deren Bestätigung alle Parameter in den Generator geladen. Durch Betätigen der Taste "Abbruch" werden Änderungen nicht übernommen und die zuletzt gültigen Einstellungen sind aktiv.

4.4.2.2.6 Anmelden

Button "Anmelden" drücken.

Nach Betätigen des Buttons "Anmelden" öffnet sich eine Eingabemaske zur Eingabe des Passwortes des Benutzers. Nach erfolgreicher Anmeldung schließt die Eingabemaske automatisch.

Detaillierte Informationen zur Festlegung und Änderung der unterschiedlichen Benutzer-Passwörter siehe Kap. 4.4.2.2.1.

4.4.2.3 Voreinstellung

Button "Voreinstellung" drücken.

Dialog zum Laden, Speichern, Bearbeiten und Löschen von Voreinstellungen des kompletten Parametersatz zur schnellen Anpassung der unterschiedlichen Werte für den jeweiligen Betrieb.

Im linken Teil der Ansicht sind die aktuell gespeicherten Voreinstellungen, der rechte Teil zeigt die möglichen Optionen einer Bearbeitung.

Abb. 41: Übersicht Voreinstellung

Laden

Die aktuelle ausgewählte Voreinstellung (z.B. "Preset_0001") wird nach der Betätigung des Buttons "Laden" in den Parametersatz des Generators geladen.

Neu

Der aktuell eingestellte Parametersatz wird unter dem einzugebenden Namen in der Liste der Voreinstellungen abgespeichert.

Ändern

Bearbeitung der ausgewählten Voreinstellung. Es können alle Parameter sowie der Dateiname angepasst werden.

Löschen

Löschen der ausgewählten Voreinstellung. Nach Betätigung des Buttons "Löschen" wird der Eintrag aus der Liste der Voreinstellungen entfernt.

4.4.2.4 Übersicht Eltex DEBUG / Meldungsübersicht

Button "Eltex DEBUG" drücken.

Anzeige der aktuell aufgetretenen Fehler- bzw. Warnungsmeldungen

Abb. 42: Übersicht Eltex DEBUG

> Nach Betätigung des Buttons "Fehlerhistorie" erscheint eine chronologische Auflistung aller aufgetretenen Meldungen.

> Durch Klicken auf den jeweiligen Eintrag werden weitere Informationen zur Ursache der Meldung und Behebung angezeigt.

Fehlerdetails					
Hochspannung Aufladung					
Hochspannung Aufladung Elektrode reinigen. Einbauposition prüfen. Sollwert verringern. Fehler quittieren.					
Gerät neu starten Abbruch Quittieren					

Abb. 43: Übersicht Details Fehler

> Nach Betätigung des Buttons "Quittieren" erfolgt eine interne Überprüfung; nach erfolgreicher Prüfung wird die Meldung aus der Liste entfernt.

Bei Meldungen, die nicht quittiert werden können, ist ein Neustart des Generators zur Behebung des Fehlers notwendig; über Button "Gerät neu starten" wird ein Neustart durchgeführt. Zu beachten ist, dass "Diagnose-Meldungen" nicht über diese Option behebbar sind. Hier ist ein Aus- und Einschalten des Genertors zwingend notwendig.

4.4.2.5 Parameter

Button "Parameter" drücken.

Abb. 44: Übersicht Parameter

> Entweder mit dem Schiebeschalter oder der Auswahlliste ist der Wert des Parameters veränderbar; mit OK den ausgewählten Wert bestätigen. Bei nicht ausreichender Zugriffsberechtigung erfolgt eine Passwortabfrage. Mit der Option "Alle ändern" erfolgt das Setzen aller Parameter, die mit aktuellem Zugriffslevel geändert werden können; Rückmeldung abwarten.

Zu beachten ist, dass die Parameterliste nur die Einträge enthält, die mit der aktuellen Zugriffsberechtigung gelesen werden können. Die Zugriffsberechtigungen werden unter "Konfiguration => Zugriffsverwaltung" festgelegt.

4.4.2.6 Parameter Allgmein

Status Aufladung	Parame Entladu	ter Ing	Ist Allg	werte Jemein		Allgem Schnitts	ein telle
🔵 Aktiv				Į.	Ä	ndern	
HSP Freigabe Mod	us	IMMI				Ŧ]
Verschmutzungsül	Aus				-]	
LED Balken Modus	;	Spann	nung			Ŧ	
Freigabe Konfiguration	n Voreinstellu	ng		Hauptseite			

Abb. 45: Übersicht Parameter allgemein

> Zur besseren Übersicht sind die einzelnen Parameter in mehreren Tabs organisiert. Zum Beispiel ist über den Tab "Allgemein" der Modus zur Hochspannungsfreigabe veränderbar. Mittels dieses Parameters ist es möglich, die Optionen zum Setzen bzw. Sperren der Hochspannungsfreigabe zu aktivieren oder zu deaktivieren.

5. Wartung

Warnung! Stromschlaggefahr!

- Schalten Sie vor allen Wartungs- und Reparaturarbeiten den Generator ab und unterbrechen Sie die Versorgungsspannung.
- Die Maschine, an der die Geräte installiert sind, darf nicht in Betrieb sein.
- Reparatur- und Wartungsarbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

5.1 Hochspannungsgenerator

Der Generator ist in regelmäßigen Abständen auf seine korrekte Funktion zu überprüfen. Die Kühlrippen müssen sauber gehalten werden und der Anschlussbereich der Hochspannungskabel muss frei von Verschmutzungen sein. Die Intervalle für die Prüfung sind anwendungsspezifisch und daher in Abhängigkeit von den Einsatzbedingungen vom Betreiber festzulegen. Der Generator selbst bedarf keiner speziellen Wartung.

5.2 Aufladeelektroden / Entladeelektroden

Um die einwandfreie Funktion der Elektroden sicherzustellen, müssen diese mindestens einmal wöchentlich mit wasser- und ölfreier Druckluft (max. 6 x 10⁵ Pa) und einer Bürste mit weichen Kunststoffborsten gereinigt werden.

Bei Verschmutzungen z. B. mit Fett, Kleber, Farbe, etc. muss die Elektrode mit Waschbenzin gereinigt werden.

Elektroden und Hochspannungskabel dürfen nicht in Lösemittel eingetaucht werden!

Warnung!

Verpuffungsgefahr!

Vor einer weiteren Inbetriebnahme muss das Lösungsmittel vollständig verdampft sein.

Achtung!

Die Emissionsspitzen der Elektroden dürfen beim Reinigen nicht beschädigt werden. Nur in Längsrichtung bürsten.

6. Störungsbeseitigung

Warnung! Stromschlaggefahr!

- Schalten Sie vor allen Wartungs- und Reparaturarbeiten den Generator ab und unterbrechen Sie die Versorgungsspannung.
- Die Maschine, an der die Geräte installiert sind, darf nicht in Betrieb sein.
- Reparatur- und Wartungsarbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

6.1 Fehlermeldungen

Bei Auftreten einer Störung wird die Hochspannung umgehend abgeschaltet und der Störmeldeausgang auf 0 V gezogen.

Hinweis!

Störungen werden nicht gespeichert. Eine Unterbrechung der Versorgungsspannung führt automatisch zum Wegfall der Störungsmeldung.

In nachfolgender Tabelle sind die einzelnen Fehlernummern nach Nummern gelistet.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
1	Nein	Initialisierung fehlgeschlagen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
2	Nein	CPU Takt fehlerhaft	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
3	Nein	Ungültige Hochspanungs- konfiguration	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
4	Nein	Ungültige Schnittstellen- konfiuration	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
5	Nein	Ungültige Fehlernummer	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
6	Nein	Ungültiger Fehlerzustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
7	Nein	Ungültige Warnungsnummer	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
8	Nein	Ungültiger War- nungszustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
9	Nein	Ungültige Sperre Endstufen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
10	Nein	Ungültiger Systemzustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
11	Nein	Ungültige Kalibrierdaten	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
13	Nein	Fehler im Logging Betriebsda- ten	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
14	Nein	Ungültige Parameterdaten	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
15	Nein	Ungültiger Betriebs- zustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
16	Nein	Ungültiges Kommando Parameterzugriff	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
17	Nein	Ungültiger Applikationszustand	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
18	Nein	Ungültiger Datenblock	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
19	Nein	Ungültige Datenposition	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
22	Ja	24 V DC Versorgung fehlerhaft	 24 V DC Versorgung prüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
23	Ja	Überstrom Spannungsversor- gung	 24 V DC Versorgung prüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
24	Ja	Hochspannung Aufladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
29	Ja	Strom Hochspannung Aufladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
32	Ja	Leistung Hochspannung Aufladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
35	Ja	Sperre der Hochspannung fehlgeschlagen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
36	Ja	Sollwerteinstellung fehlgeschlagen	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
37	Ja	Ungültiger Freigabezustand	 Freigabeschaltung der Hochspannung prüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
40	Ja	Verschmutzung Elektrode Aufladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
42	Ja	Allgemeiner Speicherfehler	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
43	Ja	Lesezugriff Speicher	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
44	Ja	Schreibzugriff Speicher	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
45	Ja	Ungültige Parameteradresse	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
48	Ja	Störmeldeausgang	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
49	Ja	LEDs	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
50	Ja	Analogschnittstelle	 Anschluss der Analogschnittstelle pr üfen. Spannungen an Schnittstelle pr üfen. Fehler quittieren. Bei erneutem Auftreten Ger ät zur Reparatur einschicken.
51	Ja	Tastatur	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
52	Ja	PID Regler	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
53	Ja	Reglerbereich PID	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
54	Ja	Sollwertrampe	Fehler quittieren.Bei erneutem Auftreten Gerät zur Reparatur einschicken.
55	Ja	Verblitzungszähler harte Verblitzungen, Limit überschritten	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
56	Ja	Verblitzungszähler weiche Verblitzun- gen, Limit überschritten	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
57	Ja	Temperatur	 Einbau des Generators prüfen. Kühlung des Gehäuses verbessern. Umgebungstemperatur reduzieren. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
58	Ja	Hochspannung Entladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
59	Ja	Strom Hochspannung Entladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
60	Ja	Kurzschluss Hochspannung Aufladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
61	Ja	Leistung Hochspannung Entladung	 Elektrode reinigen. Einbauposition überprüfen. Sollwert verringern. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
62	Ja	Entladeelektrode 1	 Anschluss der Elektrode prüfen. Einstellungen überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
63	Ja	Entladeelektrode 2	 Anschluss der Elektrode prüfen. Einstellungen überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
73	Ja	Allgemeiner Fehler Ethernet Modul	 Busleitungen prüfen. Kommunikation mit Steuerung überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
74	Ja	Kommunikationsfeh- Ier Ethernet Modul	 Busleitungen prüfen. Kommunikation mit Steuerung überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
76	Ja	Ungültiger Betriebs- zustand Ethernet Modul	 Busleitungen prüfen. Kommunikation mit Steuerung überprüfen. Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
81	Nein	Diagnosefehler: Feh- ler im Fehlermanage- ment der Diagose	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
82	Nein	Diagnosefehler: Ungültiger Zustand der Diagnose	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
83	Nein	Diagnosefehler: Initialisierung der Diagnose fehlge- schlagen	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
84	Nein	Diagnosefehler: Erdverbindung fehlerhaft	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
85	Nein	Diagnosefehler: Spannungsversor- gung fehlerhaft	 Versorgungsspannung unterbrechen und prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
86	Nein	Diagnosefehler: Überspannung Kanal 1 Aufladung	 Versorgungsspannung unterbrechen. Elektrode reinigen. Sollwert verringern. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
87	Nein	Diagnosefehler: Überspannung Kanal 2 Aufladung	 Versorgungsspannung unterbrechen. Elektrode reinigen. Sollwert verringern. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
88	Nein	Diagnosefehler: Überwachung Zwi- schenkreisspannung	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
89	Nein	Diagnosefehler: Überwachung Endstufe	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
90	Nein	Diagnosefehler: Hardware Freigabe Kanal 1 Aufladung	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
91	Nein	Diagnosefehler: Hardware Freigabe Kanal 2 Aufladung	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
92	Nein	Diagnosefehler: Software Freigabe Aufladung	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
93	Nein	Diagnosefehler: Freigabe Aufladung inkonsistent	 Versorgungsspannung unterbrechen. Anschluss der Elektrodeprüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
96	Nein	Diagnosefehler: Überwachung Entladung Kanal 1	 Versorgungsspannung unterbrechen. Anschluss der Elektrode prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
97	Nein	Diagnosefehler: Überwachung Entladung Kanal 2	 Versorgungsspannung unterbrechen. Anschluss der Elektrode prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
98	Nein	Diagnosefehler: Überwachung Hochspannung Entladung	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
99	Nein	Diagnosefehler: Überspannung Kanal 1 Entladung	 Versorgungsspannung unterbrechen. Elektrode reinigen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
100	Nein	Diagnosefehler: Überspannung Kanal 2 Entladung	 Versorgungsspannung unterbrechen. Elektrode reinigen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
103	Nein	Diagnosefehler: Hardware Freigabe Kanal 1 Entladung	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

Fehler- nummer	Fehler quittierbar	Ursache	Maßnahme
104	Nein	Diagnosefehler: Hardware Freigabe Kanal 2 Entladung	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
105	Nein	Diagnosefehler: Software Freigabe Entladung	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
106	Nein	Diagnosefehler: Freigabe Entladung inkonsistent	 Versorgungsspannung unterbrechen. Freigabeschaltung prüfen. Bei erneutem Auftreten Gerät zur Reparatur einschicken.

6.2 Warnungsmeldungen

Bei Auftreten einer Warnung wird die Ausgabe der Hochspannung nicht gesperrt.

Hinweis!

Warnungen werden nicht gespeichert. Eine Unterbrechung der Versorgungsspannung führt automatisch zum Wegfall der Warnungsmeldung.

In nachfolgender Tabelle sind die Nummern der aufgetretenen Warnungen aufgelistet.

Warnungs- nummer	Ursache	Maßnahme
1	Fehler nicht quittierbar	 Versorgungsspannung unterbrechen. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken.
2	Zu quittierender Fehler nicht aufgetreten	Warnung quittieren.
3	Fehlerzähler weist ungültigen Wert auf.	Warnung quittieren.
4	Freigabe der Endstufe ist gesperrt.	 Während der Freigabe der Hochspannung ist ein Fehler aufgetreten. Freigabetelegramm nicht erneut senden. Zunächst Fehlerursache beseitigen und danach die Warnung quittieren.

Warnungs- nummer	Ursache	Maßnahme	
7	Batterie Spannung zu niedrig	 Integrierte Batterie wechseln; siehe Beschreibung Kap. 11. Wechsel ist durch Fachpersonal durchzuführen. 	
8	Verblitzungszähler harte Verblitzungen, Limit überschritten	Elektrode reinigen.Einbauposition prüfen.Sollwert verringern.	
9	Verblitzungszähler weiche Verblitzungen, Limit überschritten	Elektrode reinigen.Einbauposition prüfen.Sollwert verringern.	
13	Verschmutzung Elektrode Aufladung	Elektrode reinigen.	
16	Stromlimit Aufladung	Elektrode reinigen.Einbauposition prüfen.Sollwert verringern.	
17	Spannungslimit Aufladung	Elektrode reinigen.Einbauposition prüfen.Sollwert verringern.	
22	Spannungslimit Entladung	Elektrode reinigen.Einbauposition prüfen.	
23	Stromlimit Entladung	Elektrode reinigen.Einbauposition prüfen.	
24	Leistungslimit Aufladung	Elektrode reinigen.Einbauposition prüfen.Sollwert verringern.	
26	Temperatur	 Einbau des Generators prüfen. Kühlung des Gehäuses verbessern. Umgebungstemperatur reduzieren. Sollwert verringern. 	
29	Leistungslimit Entladung	 Elektrode reinigen. Einbauposition prüfen. Sollwert verringern. Anschlussleistung reduzieren. Frequenz Entladung reduzieren. 	

Warnungs- nummer	Ursache	Maßnahme	
64	CAN Kommunikation	 Busverkabelung prüfen. Eingestellte Baudrate prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
65	Allgemeiner CANopen® Kommunikationsfehler	 Busverkabelung prüfen. CANopen® Übertragung prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
66	CANopen® SDO Zugriff	 SDO Protokoll zur Übertragung prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
67	CANopen® PDO Zugriff	 PDO Protokoll zur Übertragung prüfen. PDO Zugriff mit EDS Datei vergleichen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
68	CANopen® PDO Datenlänge fehlerhaft	 PDO Protokoll zur Übertragung prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
69	CANopen® Bufferüberlauf	 Buslast zu hoch. Zu viele CAN Nachrichten gesendet. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken. 	
70	CANopen® Fehlerfeld Übertragungsfehler	 Fehler quittieren. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken. 	
71	CANopen® Knotenüberwachungsf- ehler	 Knotenüberwachung des CANopen® - Masters prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur ein- schicken. 	

Warnungs- nummer	Ursache	Maßnahme
72	Fehler bei erneutem Verbindungsaufbau	 Busverkabelung prüfen. Eingestellte Baudrate prüfen. Warnung quittieren. Bei erneutem Auftreten Gerät zur Reparatur einschicken.
81	Parameter Minimum unterschritten	 Parameter automatisch auf Minimum korrigiert. Warnung quittieren.
82	Parameter Maximum überschritten	Parameter automatisch auf Maximum korrigiert.Warnung quittieren.
84	Ungültiger Parameterwert	 Parameter nicht geändert. Korrekten Wert übertragen. Warnung quittieren.

7. Garantie

Unter der Voraussetzung, dass die Betriebsbedingungen eingehalten und keine Eingriffe an den Geräten vorgenommen wurden und die Komponenten keine mechanischen Schäden aufweisen, gilt eine Garantie von 12 Monaten.

Die Garantie gilt nur, wenn die von Eltex beschriebenen Montage- und Handhabungsvorschriften eingehalten werden. Die Garantiezeit beginnt mit der Lieferung.

Im Falle eines Defektes während der Garantiezeit werden die Geräte oder fehlerhafte Komponenten im Hause Eltex wieder in Stand gesetzt oder ersetzt. Defekte Bauteile werden kostenlos ersetzt und eingebaut.

Ist eine Reparatur vor Ort erforderlich, werden die Kosten für die Entsendung eines Technikers (Fahrt, Fahrtzeit, Spesen) dem Kunden in Rechnung gestellt.

8. Technische Daten POWER CHARGER PC__

Leistungsdaten			
Versorgungsspannung	PC/L: 24 V DC ±15 %, 100 W PC/_S: 90 - 264 V AC, 47 - 63 Hz, 100 W PC/_H: 90 - 264 V AC, 47 - 63 Hz, 200 W		
	An den Eingangssteckern der 24 V DC Versorgungsspan- nung, den analogen Schnittstellen der Auf- und Entladung sowie den Feldbusschnittstellen darf die Spannung 60 V nicht überschreiten.		
Einschaltstrom	max. 25 A		
Ausgangsspannung	Aufladung: U _{min} - U _{max} siehe Tabelle Seite 11 Entladung: 3,5 - 5 kV AC, 50 Hz		
Ausgangsstrom	Aufladung: I _{min} - I _{max} siehe Tabelle Seite 11 Entladung: max. 6,2 mA(Varianten abhängig)		
Regelung	Stromkonstant bzw. Spannungskonstant		
Gehäuse	Aluminium beschichtet		
Schutzart	IP54 gemäß EN 60529		
Betriebsumgebungs- temperatur	+5+50°C (+41+122°F)		
Lagertemperatur	-20+80°C (-4+176°F)		
Umgebungsfeuchte	max. 80 % r.F. nicht kondensierend		
Maße mit Wandhalterung	106 x 232 x 394 mm (H x B x T)		
Gewicht	max. 8 kg (abhängig von der Generatorvariante)		
UL Zulassung	File No. E227156		
Performance Level d Zulassung	abhängig von der Gerätevariante, siehe Typenschild		
Freigabe	Die Anforderungen an PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) müssen erfüllt sein.		

Anschlüsse, Schnittstellen			
Hochspannungsausgang	2 Hochspannungsanschlüsse zum direkten Anschluss von zwei Verbrauchern		
Analoge Schnittstelle	Potentialfreier Eingang für externe Hochspannungsfreigabe (24 V DC) Eingang Sollwert: 010 V bzw. 0 - 20 mA Ausgang Istwert: 020 mA Störmeldeausgang: max. 24 V DC ±20 % / 50 mA interne Absicherung 24 V DC-Ausgang: max. 24 V DC ±20 % / 50 mA) interne Absicherung		
Anschlüsse, Schnittstellen (optional)			
CANopen®	Unterstützte CANopen® Baudraten: 10 kBit/s, 20 kBit/s, 50 kBit/s, 125 kBit/s, 250 kBit/s, 500 kBit/s, 800 kBit/s, 1000 kBit/s		
ModbusTCP	Unterstützte Übertragungsgeschwindigkeiten: 10 / 100 MBit/s		

entsprechend Gerätekennzeichnung:

Garantierte sicherheitstechnische Kenngrößen für Generatorvarianten mit Performance Level d PC__/____P und PC__/____D

Hochspannungsgenerator POWER CHARGER					
Sicherheitstechnische Kenngrößen gemäß EN ISO 13849					
SF1 SF2 SF1 + SF2 (Aufladung) (gesamt)					
Kategorie	Kat 3	Kat 3	Kat 3		
Performance Level	PL d	PL d	PL d		
PFH bzw. PFHd	2,06E-09 / h	1,51E-09 / h	4,44E-09 / h		

Sicherheitsfunktion nach Performance Level

Sicherheitsfunktion 1 (SF1)

Die Aufladespannung darf nur erzeugt werden, wenn

- sie von der Steuerung angefordert wird und
- die Erdungsüberwachung der Entladung keinen Fehler signalisiert und
- keine Überspannung an der Aufladeelektrode gemeldet wird.

Sicherheitsfunktion 2 (SF2)

Die Entladespannung darf nur erzeugt werden, wenn

- sie von der Steuerung angefordert wird und
- die Erdungsüberwachung der Entladung keinen Fehler signalisiert und
- keine Überspannung an der Entladeelektrode gemeldet wird.

9. Abmessungen

9.1 Hochspannungsgenerator POWER CHARGER

Montage mit 4x Sechskantschraube M5 (alternativ M6) mit Beilagscheibe

9.2 Verteiler PCV (optional)

9.3 Verlängerungskabel KA/YY___

Abb. 48: Maße Verlängerungskabel KA/YY_ _ _

Z-117457y_2

10. Ersatzteile und Zubehör

Artikel	Artikel-Nr.
Netzkabel 24 V DC (kundenseitigen Anschluss und Kabellänge spezifizieren)	KN/H
Netzkabel Standard mit Kaltgerätestecker, Form C13, mit integrierter Verriegelung	
(kundensenigen Anschluss und Kabellange spezifizieren)	KN/G
Netzkabel Standard (Schukostecker), Kabellange 2 m	116327
Netzkabel USA, Kabellänge 2 m	116328
Stecker M16 für 24 V DC Spannungsversorgung, konfektionierbar	116136
Kaltgerätestecker für AC-Netzversorgung mit Verriegelungsbügel, konfektionierbar	116329
Schnittstellenkabel Analog-Schnittstelle Aufladung, kundenseitig offene Kabelenden (Kabellänge angeben)	CS/AMO
Stecker M12, 8-polig für Analog-Schnittstelle Aufladung	116137
Schnittstellenkabel Analog-Schnittstelle Entladung, kundenseitig offene Kabelenden (Kabellänge angeben)	CS/EMO
Stecker M12, 5-polig für Analog-Schnittstelle Entladung	116138
Schnittstellenkabel Feldbus CANopen®, male, kundenseitig Stecker/Buchse, gerade/gewinkelt oder offene Kabel-enden wählbar (Kabellänge angeben)	CS/CM
Schnittstellenkabel Feldbus CANopen®, female, kundenseitig Stecker/Buchse, gerade/gewinkelt oder offene Kabelenden wählbar (Kabellänge angeben)	CS/CF
T-Verteiler M12, 5-polig, geschirmt	114854
Adapter D-Sub-Buchse, M12-Stecker	114858
Schnittstellenkabel Feldbus Industrial Ethernet, male, kundenseitig Stecker, gerade/gewinkelt oder offene Kabelenden wählbar (Kabellänge angeben)	CS/IM
Schnittstellenkabel Feldbus industrial Ethernet, male kundenseitig RJ45 (Kabellänge angeben, max. 10 m)	CS/IMR
Schutzkappe Hochspannungsausgang, Aufladung	116032
Schutzkappe M12-Stecker	108448
Schutzkappe Serviceschnittstelle	116121
Schutzkappe M12-Buchse	108449

Artikel	Artikel-Nr.
Schutzkappe M16-Stecker	ELM01115
Abschlussstecker CANopen®	114855
Abschlussdose CANopen®	117550
Feinsicherung AC-Variante	ELM00201
Stecker "Y" Set zum Konfektionieren des Hochspannungskabels mit Schutzschlauch für 30 kV-Aufladeelektroden bzw. Umbauset für Aufladesteckervariante Y, Hochspannungskabel Bedea, Hivolt, Sumitomo	117077
Stecker "X" Set zum Konfektionieren des Hochspannungskabels mit Schutzschlauch für 60 kV-Aufladeelektroden bzw. Umbauset für Aufladesteckervariante X, Hochspannungskabel Bedea, KWV, Sumitomo	117400
Stecker "L" Set zum Konfektionieren des Hochspannungskabels mit Schutzschlauch für 5 kV-Entladeelektroden	103289
Hochspannungskabel mit Schutzschlauch vom Generator PCoder Verteiler PCV/zur Aufladeelektrode (max. 30 kV), Kabellänge angeben Bei Aufladeelektroden für den Ex-Bereich muss der Kupplungsbereich (Stecker / Buchse) dieses Verlän-	
gerungskabels außerhalb des Ex-Bereichs liegen.	KA/YY
Verteiler PCV	PCV/4Y
Volt Stick	109136
Betriebsanleitung (Sprache angeben)	BA-xx-3041

Geben Sie bei einer Bestellung bitte immer die Artikelnummer an.

11. Außerbetriebnahme / Batterieentnahme

Für die Entsorgung des Generators sind folgende Schritte vorzunehmen:

Achtung!

Die Arbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

Warnung!

Stromschlaggefahr!

Vor dem Öffnen des Generators ist dieser auszuschalten und alle Steckverbinder und Kabel sind zu entfernen.

Zu beachten ist, dass durch gespeicherte Energie der Elektronik eine Stromschlaggefahr besteht. Den Generator erst nach einer Wartezeit öffnen und danach - vor der Entfernung der Batterie - auf Spannungsfreiheit prüfen.

Ein Batteriewechsel ist nicht erlaubt. Durch Einsatz eines falschen Batterietyps besteht Explosionsgefahr!

Die im Generator integrierte Batterie ist vor der Entsorgung zu entfernen und separat zu entsorgen. Hierzu ist das Gehäuse über die rückseitige Platte zu öffnen, die Lithium-Batterie zu demontieren und getrennt zu entsorgen.

Nach der Entfernung der Batterie kann der Generator nach den Methoden der allgemeinen Abfallentsorgung (Elektroschrott) erfolgen.

A. ANHANG

- A.1 Konfektionierung der Stecker
- A.1.1 Stecker M16 für 24 V DC Spannungsversorgung Gerade Version, Ausführung mit Schirmklemmring

Abb. 49: Stecker M16 für 24 V DC Spannungsversorgung

- 1. Druckschraube, Klemmkorb, Dichtung, Distanzhülse auf ersten Schirmklemmring auffädeln.
- 2. Litzen abisolieren, Schirm aufweiten und zweiten Schirmklemmring auffädeln.
- 3. Litzen anlöten, Distanzhülse montieren, die beiden Klemmringe mit dem Schirm zusammenschieben und überstehenden Schirm abschneiden.
- 4. Übrige Teile gemäß Darstellung montieren.

A.1.2 Kaltgerätestecker für AC-Netzversorgung

Abb. 50: Kaltgerätestecker für AC-Netzversorgung

Z-116378y

A.1.3 Stecker M12, 8-polig für Analog-Schnittstelle Aufladung

A.1.4

electrostatic innovations Z-116137y

A.2 Verschmutzungsüberwachung

Aufladung

Die Verschmutzungsüberwachung ist eine zusätzliche Funktion zur Überwachung der Aufladeelektrode; sie ist in den Generatorvarianten mit Display und integriertem Feldbus verfügbar. Für die Nutzung ist der Parameterwert für die Verschmutzungsüberwachung entsprechend einzustellen.

Die Ermittlung des aktuellen Grads für die Verschmutzung erfolgt durch einen Vergleich des hinterlegten Nominalwiderstands und dem aktuellen Lastwiderstand der Aufladung. Nimmt dieser Lastwiderstand ab, verschmutzt die Elektrode leitfähig. Bei einer isolierenden Verschmutzung erhöht sich der Wert entsprechend.

Die Ermittlung des Nominalwiderstands kann durch manuelle Berechnung des Widerstandwerts, das Auslesen des aktuellen Istwerts für den Lastwiderstand der Aufladung oder der automatischen Verschmutzungskalibrierung erfolgen. Hierbei ist aber zu beachten, dass die Ermittlung mit einer neuen bzw. frisch gereinigten Elektrode durchzuführen ist.

Der Nominalwiderstand ist für jede Anwendung und für alle unterschiedlichen Bedingungen separat zu ermitteln. Bei der automatischen Kalibrierung der Verschmutzungsüberwachung wird der Istwert des Lastwiderstands über einen Zeitraum von 20 Minuten aufgezeichnet und gemittelt.

Der aktuelle Grad für die Verschmutzung stellt einen prozentualen Wert dar. Bei einer Anzeige von 0 % ist der aktuelle Wert des Lastwiderstands gleich dem des Nominalwiderstands. 100 % sind eine Verdoppelung bzw. eine Halbierung des Lastwiderstands im Vergleich des Nominalwiderstands.

Überschreitet der Verschmutzungsgrad den Wert von 80 % wird die entsprechende Warnungsmeldung gesetzt. Die Fehlermeldung für die Verschmutzung tritt bei einem Wert größer 100 % auf.

Entladung

Eine Verschmutzungsüberwachung der Entladeelektroden ist nicht integriert. Die Erkennung der Verschmutzung der Elektrode erfolgt indirekt mittels der Istwerte für den Entladestrom und –spannung. Beim Auftreten entsprechender Fehlermeldungen für den Entladestrom und die Entladespannung ist die Elektrode zu prüfen und entsprechend zu reinigen.

A.3 Verblitzungserkennung

Verblitzungen sind sprunghafte Istwert-Änderungen des Stroms der Aufladung. Diese können durch geerdete Substrate im Bereich der Aufladeelektrode, geschädigter Hochspannungskabel, etc. hervorgerufen werden. Um einen möglichst reibungsfreien und langlebigen Betrieb des Generators zu gewährleisten, ist eine Verblitzungserkennung integriert. Diese erkennt die Verblitzungen und generiert beim Überschreiten des eingestellten Limits Fehler- bzw. Warnungsmeldungen. Die Erkennung erfolgt bei aktivierter Aufladung.

Zur Optimierung der Verblitzungserkennung können die Grenzen für die Erkennung eingestellt werden. Grundsätzlich sind zwei Arten von Verblitzungen erkennbar: harte und weiche Verblitzungen.

Die Erkennung erfolgt in beiden Fällen gleich. Lediglich die Empfindlichkeit zur Erkennung ist unterschiedlich. Die Verblitzung wird erkannt, wenn die sprunghafte Stromänderung im Erkennungszeitraum größer des eingestellten prozentualen Faktors für die Art der Veblitzung ist. Der Faktor bezieht sich hierbei stets auf den maximalen Ausgangsstrom des Generators.

Beispiel:

Imax = 7,5 mA, Faktor = 10 %

Verblitzungserkennung erfolgt bei > 0,75 mA

Überschreitet die Stromänderung das Level des Erkennungszeitraums, wird der entsprechende Zähler hochgezählt. Überschreitet der Zähler den eingestellten Wert des Zählerlimits wird die Fehler- bzw. Warnungsmeldung generiert. Treten innerhalb von zehn Sekunden nach Erkennung einer Verblitzung keine weiteren Verblitzungen auf, erfolgt das schrittweise Zurückzählen der einzelnen Zähler.

A.4 Übersicht der Istwerte und Parameter

A.4.1 Istwerte Aufladung

Funktion	Beschreibung	Standard Zugriffslevel
Spannung Aufladung	Ausgangsspannung der Hochspannung Aufladung	Benutzer
Strom Aufladung	Ausgangsstroms der Aufladung	Benutzer
Betriebszustand Aufladung	Aktueller Betriebszustand der Aufladung mit Anzeige des Modus und evtl. aktivem Limiter	Benutzer
Leistung Aufladung	Ausgangsleistung der Aufladung	Benutzer
Auslastung Spannung Aufladung	Prozentuale Hochspannungs-Auslastung der Aufladung	Benutzer
Auslastung Strom Aufladung	Prozentuale Strom-Auslastung der Aufladung	Benutzer
Auslastung Leistung Aufladung	Prozentuale Leistungs-Auslastung der Aufladung	Benutzer
Verschmutzung Aufladung	Prozentuale Abweichung des aktuellen Lastwiderstands der Aufladung mit dem hinterlegten Nominalwiderstand zur Verschmutzungsüberwachung (siehe Kap. A.2)	
Harte Verblitzungen Fehlerzähler	te Fehlerzähler der Erkennung harter Verblitzungen (siehe Kap. A.3) lerzähler	
Harte Verblitzungen Warnungszähler	Warnungszähler der Erkennung harter Verblitzungen gen (siehe Kap. A.3) zähler	
Weiche Verblitzungen Fehlerzähler	Fehlerzähler der Erkennung weicher Verblitzungen (siehe Kap. A.3)	Benutzer
Weiche Verblitzungen Warnungszähler	Warnungszähler der Erkennung weicher Verblitzungen (siehe Kap. A.3)	Benutzer
Lastwiderstand	Lastwiderstand der Aufladung	Benutzer

A.4.2 Istwerte Entadung

Die Istwerte Entladung sind in den Varianten mit integrierter Entladung (PC__/A, PC__/C und PC__/P verfügbar. Zu beachten ist, dass je nach Variante nicht alle Istwerte verfügbar sind.

Funktion	Beschreibung	Standard Zugriffslevel
Spannung Entladung	Effektivwert der sinusförmigen Ausgangsspannung der Hochspannung, Entladung	Benutzer
Aktiver Entladestrom	Effektivwert des aktiven sinusförmigen AC Stroms der Entladung	Benutzer
Passiver Entladestrom	Effektive Scheinleistung der Entladung	Super Benutzer
Leistung Entladung	Ausgangsleistung der Entladung	Super Benutzer
Betriebszustand Entladung	Aktueller Betriebszustand der Entladung mit Anzeige des Modus und evtl. aktivem Limiter	Benutzer
Auslastung Entladung	Prozentuale Hochspannungs-Auslastung der Entladung	Benutzer
Verschmutzung Entladeelektrode 1	Darstellung der ermittelten Verschmutzung für Entladeelektrode 1	Benutzer
Verschmutzung Entladeelektrode 2	Darstellung der ermittelten Verschmutzung für Entladeelektrode 2	Benutzer

A.4.3 Istwerte Allgemein

Funktion	Beschreibung	Standard Zugriffslevel
Versorgung Spannung	Spannung der internen Versorgungsspannung	Super Benutzer
Versorgung Strom	Strom der internen Versorgungsspannung	Super Benutzer
Versorgung Leistung	Leistungsaufnahme der internen Versorgungsspannung	Super Benutzer
Versorgung Auslastung	Prozentuale Auslastung der Leistung der Versorgungsspannung	Super Benutzer

A.4.4 Parameter Aufladung

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellungen
Spannungs- sollwert Aufladung	Einstellung des Sollwerts der Hochspannung, Aufladung	Betrachter (lesen) Benutzer (schreiben)	U _{min} - U _{max}	U _{min}
Strom- sollwert Aufladung	Einstellung des Sollwerts des Stroms, Aufladung	Betrachter (lesen) Benutzer (schreiben)	I _{min} - I _{max}	I _{max}
Betriebs- zustand Aufladung	Auswahl des Betriebs- zustands, Aufladung	Betrachter (lesen) Benutzer (schreiben)	Spannungs- konstant, Strom- konstant	Spannungs- konstant
Sollwert Aufladung	Einstellung des Sollwerts in Prozent. Je nach Betriebs- zustand wird der entspre- chende Sollwert verändert.	Super Benutzer (lesen) Super Benutzer (schreiben)	0 - 100 %	5 %
Rampenzeit	Anlaufzeit der Hochspannung, Aufladung	Super Benutzer (lesen) Super Benutzer (schreiben)	100 ms - 10.000 ms	500 ms
Harte Ver- blitzungen Faktor	Einstellung der Empfind- lichkeit zur Erkennung harter Verblitzungen	Super Benutzer (lesen) Super Benutzer (schreiben)	25 % - 40 %	25 %
Weiche Ver- blitzungen Faktor	Einstellung der Empfind- lichkeit für die Erkennung weicher Verblitzungen	Super Benutzer (lesen) Super Benutzer (schreiben)	10 % - 25 %	10 %
Limit Verblitzungs- zähler	Limit für die Erkennung von Fehlern bzw. Warnungen des jeweiligen Verblitzungszählers	Super Benutzer (lesen) Super Benutzer (schreiben)	0 - 1.000	10
Nominal- widerstand Aufladung	Ermittelter normierter Wider- stand der Aufladung zur Erkennung von Verschmut- zungen	Super Benutzer (lesen) Super Benutzer (schreiben)	0 kΩ - 1.000.000 kΩ	0 kΩ

A.4.5 Parameter Entladung

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellunge n
Spannungs- sollwert Entladung	Einstellung des Sollwerts der Hochspannung, Entladung	Betrachter (lesen) Benutzer (schreiben)	3.500 V - 5.000 V	5.000 V
Betriebs- zustand Entladung	Auswahl des Betriebs- zustands, Entladung	Super Benutzer (lesen) Super Benutzer (schreiben)	passive Entladung, aktive Entladung	passive Entladung
lonen- balance	Optimierung der Ent- ladung der Einstellung der Balance positiver und negativer Ionen	Betrachter (lesen) Benutzer (schreiben)	0 - 100 %	50 %
Sollwert Entladung	Einstellung des Sollwerts der Hochspannung in Prozent, Entladung	Super Benutzer (lesen) Super Benutzer (schreiben)	0 - 100 %	100 %
Frequenz Entladung	Einstellung der Frequenz der Hochspannung, Entladung	Betrachter (lesen) Benutzer (schreiben)	50 Hz, 55,7 Hz, 62,5 Hz, 71,4 Hz, 83,3 Hz, 100 Hz, 125 Hz, 166,7 Hz 250 Hz	50 Hz
Aktive Länge Entlade- elektrode 1	Einstellung der aktiven Länge der Entladeelek- trode 1 zur Überwachung der Elektrode. Bei Einstel- lung einer aktiven Länge von 0 mm ist die Über- wachung deaktiviert.	Super Benutzer (lesen) Super Benutzer (schreiben)	0 mm - 5.000 mm	0 mm
Aktive Länge Entlade- elektrode 2	Einstellung der aktiven Länge der Entladeelek- trode 2 zur Überwachung der Elektrode. Bei Einstel- lung einer aktiven Länge von 0 mm ist die Über- wachung deaktiviert.	Super Benutzer (lesen) Super Benutzer (schreiben)	0 mm - 5.000 mm	0 mm

A.4.6 Parameter Allgemein

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellungen
Modus Hochspan- nungs- Freigabe	Modus zur Freigabe der Hochspannung	Super Benutzer (lesen) Super Benutzer (schreiben)	Automatisch, Analog-Sollwert HMI, Feldbus	НМІ
Verschmut- zungs- erkennung	Erkenung von Ver- schmutzungen der Auflade bzw. der Entladeelektroden	Super Benutzer (lesen) Super Benutzer (schreiben)	AUS, Aufladung EIN, Aufladung Kalibrierung, Entladung EIN, Entladung EIN + Aufladung EIN, Entladung EIN + Aufladung Kalibrierung	AUS
Modus LED Balken	Umschaltung der Ansicht des LED Balkens des Generators	Super Benutzer (lesen) Super Benutzer (schreiben)	Spannung, Strom	Spannung

A.4.7 Parameter Schnittstelle

Funktion	Beschreibung	Standard Zugriffslevel	Bereich	Werksein- stellungen
Analoger Sollwert	Auswahl der Ana- logschnittstelle zur Einstellung des Soll- werts, Aufladung	Super Benutzer (lesen) Super Benutzer (schreiben)	AUS, Strom 0 -20 mA, Spannung 0 - 10 V, Limitersignal, Strom 0 -20 mA + Limitersignal, Spannung 0 - 10 V + Limitersignal,	Aus
CANopen® Knoten- adresse	Einstellung der CANopen® Knotenadresse für das Gerät	Super Benutzer (lesen) Super Benutzer (schreiben)	1 - 127	99
CANopen® Baudrate	Einstellung der CANopen®Baudrate für das Gerät	Super Benutzer (lesen) Super Benutzer (schreiben)	10 kBit/s, 25 kBit/s, 50 kBit/s, 125 kBit/s, 250 kBit/s, 500 kBit/s, 800 kBit/s, 1000 kBit/s	125 kBit/s

EU-Konformitätserklärung

CE-3041-de-2008

Eltex-Elektrostatik-Gesellschaft mbH Blauenstraße 67 - 69 D-79576 Weil am Rhein

((

erklärt in alleiniger Verantwortung, dass das Produkt

Hochspannungsgenerator POWER CHARGER PC (gemäß Eltex Referenzcode)

mit den nachfolgenden Richtlinien und Normen übereinstimmt.

Angewandte EU-Richtlinie:	
2014/35/EU	Niederspannungsrichtlinie
Angewandte harmonisierte Norme:	
EN 60204-1:2018	Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen – Allgemeine Anforderungen
Angewandte EU-Richtlinie:	
2014/30/EU	EMV Richtlinie
Angewandte harmonisierte Normen:	
EN 55011:2016 + A1:2017	Industrielle, wissenschaftliche und medizinische Geräte – Funkstörungen – Grenzwerte und Messverfahren
EN IEC 61000-3-2:2019	Elektromagnetische Verträglichkeit (EMV) – Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom ≤ 16 A je Leiter)
EN 61000-3-3:2013 + A1:2019	Elektromagnetische Verträglichkeit (EMV) – Grenzwerte – Begrenzung von Spannungsänderung, Spannungsschwankungen und Flicker in öffentlichen Niederspannungs-Versorgungsnetzen für Geräte mit einem Bemessungsstrom ≤ 16 A je Leiter, die keiner Sonderanschlussbedingung unterliegen
EN IEC 61000-6-2:2019	Elektromagnetische Verträglichkeit (EMV) – Fachgrundnormen – Störfestigkeit für Industriebereiche
EN 61000-6-7:2015	Elektromagnetische Verträglichkeit (EMV) – Fachgrundnormen – Störfestigkeitsanforderungen an Geräte und Einrichtungen, die zur Durchführung von Funktionen in sicherheitsbezogenen Systemen (funktionale Sicherheit) an industriellen Standorten vorgesehen sind
Angewandte EU-Richtlinie:	
0044/05/511	

2011/65/EU

RoHS Richtlinie

jeweils in der gültigen Fassung zum Zeitpunkt der Geräteauslieferung.

Eltex-Elektrostatik-Gesellschaft mbH hält folgende technische Dokumentation zu Einsicht:

- vorschriftsmäßige Bedienungsanleitung
- Pläne
- sonstige technische Dokumentationen

Lykas Hahne, Geschäftsführer

Weil am Rhein, den 17.08.2020 Ort/Datum

Eltex Unternehmen und Vertretungen

Die aktuellen Adressen aller Eltex Vertretungen finden Sie im Internet unter www.eltex.de

